Finding Geometric Representations of Apex Graphs is NP-Hard

Dibyayan Chakraborty, ENS Lyon

Kshitij Gajjar, National University of Singapore

WALCOM 2022

25 March, 2022

イロト イヨト イヨト イヨト

Given a graph *G* and a family of geometric objects \mathcal{M} , an \mathcal{M} -representation of *G* is a mapping $\phi: V(G) \to S \subseteq \mathcal{M}$ such that $\phi(u) \cap \phi(v) \neq \emptyset$ if and only if $uv \in E(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given a graph *G* and a family of geometric objects \mathcal{M} , an \mathcal{M} -representation of *G* is a mapping $\phi: V(G) \to S \subseteq \mathcal{M}$ such that $\phi(u) \cap \phi(v) \neq \emptyset$ if and only if $uv \in E(G)$.

Graph

Geometric object

Representation

Intervals on the real line

Given a graph *G* and a family of geometric objects \mathcal{M} , an \mathcal{M} -representation of *G* is a mapping $\phi: V(G) \to S \subseteq \mathcal{M}$ such that $\phi(u) \cap \phi(v) \neq \emptyset$ if and only if $uv \in E(G)$.

Graph

Geometric object

Representation

Intervals on the real line

Intervals on the real line

X

Given a graph *G* and a family of geometric objects \mathcal{M} , an \mathcal{M} -representation of *G* is a mapping $\phi: V(G) \to S \subseteq \mathcal{M}$ such that $\phi(u) \cap \phi(v) \neq \emptyset$ if and only if $uv \in E(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

イロト イヨト イヨト イヨト

э

Can we generalize some of the theorems to apex graphs?

Can we generalize some of the theorems to apex graphs?

No !!

Observation

There are apex graphs that are not even string graphs.

<ロ> (日) (日) (日) (日) (日)

æ

We ask

Question

What are the computational complexities of representing apex graphs with various geometric objects?

◆□ → ◆□ → ◆ □ → ◆ □ → ● □ □

We ask

Question

What are the computational complexities of representing apex graphs with various geometric objects?

Formally,

Question

Given a geometric intersection graph class G, what is the computational complexity of recognizing G, when the inputs are restricted to apex graphs?

We answer (partially)

Theorem 1 (Main Result)

Let \mathcal{G} be a graph class such that

```
PURE-2-DIR \subseteq \mathcal{G} \subseteq 1-STRING.
```

Then it is *NP*-hard to decide whether an input graph belongs to \mathcal{G} , even when the inputs are restricted to graphs that are both bipartite and apex.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Some corollaries

Recognizing intersection graphs of line segments is NP-hard, even when the inputs are restricted to graphs that are bipartite and apex.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Strengthening of a result by Kratochvíl and Matoušek (1989).

Recognizing intersection graphs of line segments is NP-hard, even when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Kratochvíl and Matoušek (1989).

Corollary

Recognizing *intersection graphs of L-shapes* is NP-hard, even when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Chmel (2020).

Recognizing intersection graphs of line segments is NP-hard, even when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Kratochvíl and Matoušek (1989).

Corollary

Recognizing *intersection graphs of L-shapes* is NP-hard, even when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Chmel (2020).

Corollary

Recognizing rectangle intersection graphs is NP-hard when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Kratochvíl (1994).

Recognizing intersection graphs of line segments is NP-hard, even when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Kratochvíl and Matoušek (1989).

Corollary

Recognizing *intersection graphs of L-shapes* is NP-hard, even when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Chmel (2020).

Corollary

Recognizing rectangle intersection graphs is NP-hard when the inputs are restricted to graphs that are bipartite and apex.

Strengthening of a result by Kratochvíl (1994).

Simplification.

▲ロト ▲園ト ▲ヨト ▲ヨト 三国 - のへで

Given a graph class \mathcal{G} with PURE-2-DIR $\subseteq \mathcal{G} \subseteq 1$ -STRING.

• Reduce the PLANAR HAMILTONIAN PATH COMPLETION (PHPC) problem.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Given a graph class \mathcal{G} with PURE-2-DIR $\subseteq \mathcal{G} \subseteq 1$ -STRING.

• Reduce the PLANAR HAMILTONIAN PATH COMPLETION (PHPC) problem.

Definition

PHPC is the following decision problem. *Input:* A planar graph G. *Output:* **Yes**, if G is a subgraph of a planar graph with a Hamiltonian path; no, otherwise.

Theorem (Auer & Gleißner, 2011) *PHPC is NP-hard.*

Given a graph class \mathcal{G} with PURE-2-DIR $\subseteq \mathcal{G} \subseteq 1$ -STRING.

• Reduce the PLANAR HAMILTONIAN PATH COMPLETION (PHPC) problem.

Definition

PHPC is the following decision problem. *Input:* A planar graph G. *Output:* **Yes**, if G is a subgraph of a planar graph with a Hamiltonian path; no, otherwise.

Theorem (Auer & Gleißner, 2011) *PHPC is NP-hard.*

Objective

Given a planar graph G, construct a bipartite apex graph G_{apex} such that G is an yes-instance of PHPC if and only if $G_{apex} \in G$.

We shall show the following:

Theorem 2

Given a planar graph G, we can construct a bipartite apex graph G_{apex} in polynomial time satisfying the following properties.

<ロ> (四) (四) (三) (三) (三) (三)

- (a) If G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.
- (b) If G is an yes-instance of PHPC, then G_{apex} is in PURE-2-DIR.

 \Rightarrow Theorem 2 achieves the objective.

Proof: reduction

A planar graph $G \longrightarrow G_{3-div} \longrightarrow G_{apex}$

Planar graph G

Planar graph G

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

Given a 1-STRING representation of G_{apex} , we will construct a planar super graph of G that contains a hamiltonian path.

<ロ> (四) (四) (三) (三) (三) (三)

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

Given a 1-STRING representation of G_{apex} , we will construct a planar super graph of G that contains a hamiltonian path.

・日・ ・四・ ・日・ ・日・

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

Given a 1-STRING representation of G_{apex} , we will construct a planar super graph of G that contains a hamiltonian path.

・日・ ・四・ ・日・ ・日・

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

Given a 1-STRING representation of G_{apex} , we will construct a planar super graph of G that contains a hamiltonian path.

<ロ> (四) (四) (日) (日) (日)

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

Given a 1-STRING representation of G_{apex} , we will construct a planar super graph of G that contains a hamiltonian path.

・日・ ・四・ ・日・ ・日・

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

Given a 1-STRING representation of G_{apex} , we will construct a planar super graph of G that contains a hamiltonian path.

・日・ ・四・ ・日・ ・日・

Objective

Show that if G_{apex} is in 1-STRING, then G is an yes-instance of PHPC.

Given a 1-STRING representation of G_{apex} , we will construct a planar super graph of G that contains a hamiltonian path.

Objective

Show that if G is an yes-instance of PHPC then G_{apex} is in PURE-2-DIR.

<ロ> (四) (四) (三) (三) (三) (三)

Objective

Show that if G is an yes-instance of PHPC then G_{apex} is in PURE-2-DIR.

Objective

Show that if G is an yes-instance of PHPC then G_{apex} is in PURE-2-DIR.

<ロ> (日) (日) (日) (日) (日)

- 2

Objective

Show that if G is an yes-instance of PHPC then G_{apex} is in PURE-2-DIR.

<ロ> (四) (四) (三) (三) (三) (三)

Objective

Show that if G is an yes-instance of PHPC then G_{apex} is in PURE-2-DIR.

<ロ> (四) (四) (日) (日) (日)

12

Objective

Show that if G is an yes-instance of PHPC then G_{apex} is in PURE-2-DIR.

<ロ> (日) (日) (日) (日) (日)

1

Objective

Show that if G is an yes-instance of PHPC then G_{apex} is in PURE-2-DIR.

<ロ> (日) (日) (日) (日) (日)

臣

Open problems

- 1 Given a graph class \mathcal{G} with PURE-2-DIR $\subseteq \mathcal{G} \subseteq$ STRING, what is the complexity of recognition of \mathcal{G} when inputs are restricted to "almost planar graphs", e.g.
 - 1-planar graphs,
 - graphs with crossing number 1,
 - K₅-minor free graphs,
 - toroidal graphs,
 - projective planar graphs,
 - :
- 2 What is the complexity of recognizing intersection graphs of non-piercing regions when inputs are restricted to "almost planar graphs" ?

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Special thanks to

GRAPHMASTERS, 2020

