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L-shapes 1-String Rectangle
intersection graphs String graphs
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We answer (partially)

Theorem 1 (Main Result)

Let G be a graph class such that

PURE-2-DIR ⊆ G ⊆ 1-STRING.

Then it is #%-hard to decide whether an input graph belongs to G, even when
the inputs are restricted to graphs that are both bipartite and apex.

Pure-2-Dir G 1-STRING
Recognition is NP-hard

even when input is bipartite and apex



Some corollaries

Corollary

Recognizing intersection graphs of line segments is NP-hard, even when the inputs are
restricted to graphs that are bipartite and apex.

Strengthening of a result by Kratochvíl and Matoušek (1989).

Corollary
Recognizing intersection graphs of L-shapes is NP-hard, even when the inputs are
restricted to graphs that are bipartite and apex.

Strengthening of a result by Chmel (2020).

Corollary
Recognizing rectangle intersection graphs is NP-hard when the inputs are restricted to
graphs that are bipartite and apex.

Strengthening of a result by Kratochvíl (1994). Simplification.
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Proof technique
Given a graph class G with PURE-2-DIR ⊆ G ⊆ 1-STRING.

Reduce the PLANAR HAMILTONIAN PATH COMPLETION (PHPC) problem.

Definition
PHPC is the following decision problem.
Input: A planar graph �.
Output: Yes, if � is a subgraph of a planar graph with a Hamiltonian path; no,
otherwise.

Theorem (Auer & Gleißner, 2011)
PHPC is #%-hard.

Objective
Given a planar graph �, construct a bipartite apex graph �0?4G such that � is an
yes-instance of PHPC if and only if �0?4G ∈ G.
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Proof technique
We shall show the following:

Theorem 2

Given a planar graph �, we can construct a bipartite apex graph �0?4G in
polynomial time satisfying the following properties.
(a) If �0?4G is in 1-STRING, then � is an yes-instance of PHPC.
(b) If � is an yes-instance of PHPC, then �0?4G is in PURE-2-DIR.

⇒ Theorem 2 achieves the objective.



Proof: reduction
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Proof: Theorem 2(0)

Objective
Show that if �0?4G is in 1-STRING, then � is an yes-instance of PHPC.

Given a 1-STRING representation of �0?4G , we will construct a planar super graph of
� that contains a hamiltonian path.
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Objective
Show that if � is an yes-instance of PHPC then �0?4G is in PURE-2-DIR.

v1

v2

v3

v4

v5

v6

v7

v8

→

v1

v2

v3

v4

v5

v6

v7

v8

a

→

c(a)

→

c(v8)

c(v7)

c(v6)

c(v5)

c(v4)

c(v3)

c(v2)

c(v1)

c(a)

→

c(v8)

c(v7)

c(v6)

c(v5)

c(v4)

c(v3)

c(v2)

c(v1)

c(a)

X



Open problems

1 Given a graph class G with PURE-2-DIR ⊆ G ⊆ STRING, what is the
complexity of recognition of G when inputs are restricted to “almost planar
graphs”, e.g.

1-planar graphs,

graphs with crossing number 1,

 5-minor free graphs,

toroidal graphs,

projective planar graphs,
.
.
.

2 What is the complexity of recognizing intersection graphs of non-piercing
regions when inputs are restricted to “almost planar graphs” ?



Thank you

Special thanks to
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