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Definition
A set ( of vertices is a geodetic set if any vertex E ∈ + (�) lies in some � (G, H) where
{G, H} ⊆ (.

Minimum Geodetic Set (MGS) is to find decide whether a graph � has a geodetic
set of size at most :?
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2012

Poly-time algorithm:
proper interval
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2018

Poly-time algorithm:
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graphs (Mezzini)

NP-hard:
sub-cubic

graphs (Bueno et al.)

2020

W[1] hard:
( 5 E + ?F + :)

FPT : 5 4
(Kellerhals et al.)

NP-hard: line graphs
$ ( 3√= log =)-approximation

(Ch. et al.)

Results
of this talk.

2021

Log-APX hard:
sub-cubic bipartite graphs

(Davot et al.)
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Results

Theorem
There is a linear time algorithm for MGS on solid grids.

Theorem
MGS is NP-hard on sub-cubic patial grids.

Theorem
MGS is NP-hard on interval graphs with no induced  1,5.

Theorem

MGS can be solved in time $
(
22l

=$ (1)
)

for chordal graphs and in time $
(
2l=$ (1)

)
for interval graphs, where = and l are the order and clique number of the input
graph, respectively.






























Solid grids

Theorem
There is a linear time algorithm for MGS on solid grids.

A graph is a solid grid if it has a grid embedding such that all interior faces have unit
area.



Solid grids (Proof sketch)
A path % of � is a corner path if
(8) no vertex of % is a cut-vertex,
(88) both end-vertices of % have degree 2, and
(888) all other vertices of % have degree 3.

Corner paths Corner vertex

Lemma
Any geodetic set contains at least one vertex from each corner path.

































Solid grids (Proof sketch)

Definition
We say that D1, D2, . . . , D: forms a corner sequence if for each 1 ≤ 8 ≤ : − 1,
1. there is a corner path with D8 and D8+1 as endpoints, and
2. there is no corner vertex in the clockwise traversal of the boundary of the grid
embedding from D8 to D8+1.

Corner sequence







































Solid grids (Proof sketch)

Lemma
Let S be the set of all maximal corner sequences of a solid grid �, and let C be the
number of vertices of � with degree 1. Then, 6=(�) ≥ C +∑

(∈S b|( |/2c.

Algorithm:
Choose all vertices with degree 1,
Traverse the embedding in the clockwise direction, and for each maximal corner
sequence, choose vertices alternatively.
























Solid grids (Proof sketch)

Lemma
The set of vertices chosen by the above algorithm is a geodetic set.










































Partial grids

Theorem
MGS is NP-hard on sub-cubic patial grids.

Reduce from Minimum Vertex Cover on cubic planar graphs.
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Interval graphs

Theorem
MGS is NP-hard on interval graphs with no induced  1,5.

Reduce from 3-SAT.

� �1 �2 · · · �= �1 �2
· · ·

�< ℰ

Figure: Overview of the construction. Each box represents one of the main gadget. Lines
between such gadgets represent the tracks.

Corollary

Assuming ETH, there is no
(
2> (
√
=)

)
-time algorithm for MGS on interval graphs of

order =.











































































Chordal graphs

Theorem

MGS can be solved in time $
(
22l

=$ (1)
)

for chordal graphs and in time $
(
2l=$ (1)

)
for interval graphs, where = and l are the order and clique number of the input
graph, respectively.

Dynamic programming on the nice tree decomposition ) of a chordal graph �.

Width of ) is l.

Each bag or node of ) is a clique cut-set.















Chordal graphs (Proof sketch)

With each bag -E of ) , associate $ (22l ) many “types of partial solutions".

A “type of partial solution" g for a node -E is a 4-tuple
(
g4GC , g8=C , g2>E , g106

)
where

g4GC and g8=C are collections of subsets of -E ,

g2>E , g106 are subsets of -E

Xv

G≤v

D is a solution of type τ = (τ ext, τ int, τ cov, τ bag, ) if
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Summary

Theorem
There is a linear time algorithm for MGS on solid grids.

Theorem
MGS is NP-hard on sub-cubic patial grids.

Theorem
MGS is NP-hard on interval graphs with no induced  1,5.

Theorem

MGS can be solved in time $
(
22l

=$ (1)
)

for chordal graphs and in time $
(
2l=$ (1)

)
for interval graphs, where = and l are the order and clique number of the input
graph, respectively.



Open problems

Polynomial time algorithm for Series-parallel graphs.

Improve the running time for Chordal graphs.

Constant factor approximation for planar graphs, interval graphs.














