Recent advances on algorithms for geodetic sets

D. C.

Joint work with

Sandip Das, Florent Foucaud, Harmendar Gahlawat, Dimitri Lajou, Bodhayan Roy

Metric Graph Theory

December 9, 2021

Definition

A set *S* of vertices is a *geodetic set* if any vertex $v \in V(G)$ lies in some I(x, y) where $\{x, y\} \subseteq S$.

MINIMUM GEODETIC SET (MGS) is to find decide whether a graph G has a geodetic set of size at most k?

Chordal Bipartite,

Poly-time algorithm: split graphs and cographs (Dourado *et al.*)

▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のくで

Results

Theorem

There is a linear time algorithm for MGS on solid grids.

Theorem

MGS is NP-hard on sub-cubic patial grids.

Theorem

MGS is NP-hard on interval graphs with no induced $K_{1,5}$.

Theorem

MGS can be solved in time $O(2^{2\omega}n^{O(1)})$ for chordal graphs and in time $O(2^{\omega}n^{O(1)})$ for interval graphs, where n and ω are the order and clique number of the input graph, respectively.

Solid grids

Theorem

There is a linear time algorithm for MGS on solid grids.

A graph is a *solid grid* if it has a grid embedding such that all interior faces have unit area.

Solid grids (Proof sketch)

A path *P* of *G* is a *corner path* if

- (i) no vertex of P is a cut-vertex,
- (ii) both end-vertices of P have degree 2, and
- (*iii*) all other vertices of *P* have degree 3.

Lemma

Any geodetic set contains at least one vertex from each corner path.

Definition

We say that $u_1, u_2, ..., u_k$ forms a *corner sequence* if for each $1 \le i \le k - 1$, 1. there is a corner path with u_i and u_{i+1} as endpoints, and 2. there is no corner vertex in the clockwise traversal of the boundary of the grid embedding from u_i to u_{i+1} .

Lemma

Let S be the set of all maximal corner sequences of a solid grid G, and let t be the number of vertices of G with degree 1. Then, $gn(G) \ge t + \sum_{S \in S} \lfloor |S|/2 \rfloor$.

Algorithm:

- Choose all vertices with degree 1,
- Traverse the embedding in the clockwise direction, and for each maximal corner sequence, choose vertices alternatively.

Solid grids (Proof sketch)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

Partial grids

Theorem

MGS is NP-hard on sub-cubic patial grids.

Reduce from MINIMUM VERTEX COVER on cubic planar graphs.

Interval graphs

Theorem

MGS is NP-hard on interval graphs with no induced $K_{1,5}$.

Theorem

MGS can be solved in time $O(2^{2^{\omega}}n^{O(1)})$ for chordal graphs and in time $O(2^{\omega}n^{O(1)})$ for interval graphs, where n and ω are the order and clique number of the input graph, respectively.

• Dynamic programming on the nice tree decomposition T of a chordal graph G.

<ロ> (四) (四) (三) (三) (三) (三)

- Width of T is ω .
- Each *bag* or *node* of *T* is a clique cut-set.

Chordal graphs (Proof sketch)

• With each bag X_{ν} of *T*, associate $O(2^{2^{\omega}})$ many "types of partial solutions".

Chordal graphs (Proof sketch)

- With each bag X_v of T, associate $O(2^{2^{\omega}})$ many "types of partial solutions".
- A "type of partial solution" τ for a node X_v is a 4-tuple $(\tau^{ext}, \tau^{int}, \tau^{cov}, \tau^{bag})$ where

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- τ^{ext} and τ^{int} are collections of subsets of X_v ,
- τ^{cov}, τ^{bag} are subsets of X_v

Chordal graphs (Proof sketch)

- With each bag X_v of T, associate $O(2^{2^{\omega}})$ many "types of partial solutions".
- A "type of partial solution" τ for a node X_v is a 4-tuple $(\tau^{ext}, \tau^{int}, \tau^{cov}, \tau^{bag})$ where

Theorem

There is a linear time algorithm for MGS on solid grids.

Theorem *MGS is NP-hard on sub-cubic patial grids.*

Theorem

MGS is NP-hard on interval graphs with no induced $K_{1,5}$.

Theorem

MGS can be solved in time $O(2^{2\omega}n^{O(1)})$ for chordal graphs and in time $O(2^{\omega}n^{O(1)})$ for interval graphs, where n and ω are the order and clique number of the input graph, respectively.

Open problems

- Polynomial time algorithm for Series-parallel graphs.
- Improve the running time for Chordal graphs.
- Constant factor approximation for planar graphs, interval graphs.