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Definition

A set '&)’f vertices is a geodetic set if any vertex v € V(G) lies in some I(x, y) where
{x,y} 8S.

MiNnimvum GEoDETIC SET (MGS) is to find decide whether a graph G has a geodetic
set of size at most k?
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Results

Theorem

There is a linear time algorithm for MGS on solid grids.

T ——
Theorem
MGS is NP-hard on sub-cubic patial grids.

~

Theorem
<'ZZZGS )s NP-hard on interval graphs with no induced K s.

Theorem

MGS can be solved in time O (2> n®")) for chordal graphs and in time O (2¢n°)
for intggyal graphs, where 7O & are the order and clique number of the input
graph, respectively.































Solid grids

Theorem

There is a linear time algorithm for MGS on solid grids.

HH

A graph is a solid grid if it has a grid embedding such that all interior faces have unit
area.




Solid grids (Proof sketch)

A path P of G is a corner path if
(i) no vertex of P is a cut-vertex,
(ii) both end-vertices of P have degree 2, and

(iit) all other vertices of P have degree 3.
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Corner paths ———» ﬁ Corner vertex
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Lemma

Any geodetic set contains at least one vertex from each corner path.


































Solid grids (Proof sketch)

Definition
We say that uy, us, . .., ux forms a corner sequence if foreach1 <i < k-1,
1. there is a corner path with u; and u;,; as endpoints, and

2. there is no corner vertex in the clockwise traversal of the boundary of the grid
embedding from u; to u;4;.








































Solid grids (Proof sketch)

Lemma
—

Let S be the set of all maximal corner sequences of a solid grid G, and let t be the

number of vertices of G with aegree 1. Then, gn(G) >t + g S&S LIS|/2].

Algorithm:
@ Choose all vertices with degree 1,

@ Traverse the embedding in the clockwise direction, and for each maximal corner
sequence, choose vertices alternatively.
























Solid grids (Proof sketch)
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Lemma

The set of vertices chosen by the above algorithm is a geodetic set.











































Partial grids

Theorem

MGS is NP-hard on sub-cubic patial grids.

Reduce from MiNniMmuM VERTEX COVER on cubic planar graphs.
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Interval graphs

Theorem

MGS is NP-hard on interval graphs with no induced K s.

Reduce from 3-SAT.
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Figure: Overview of the construction. Each box represents one of the main gadget. Lines

badgets represent the tracks.

Corollary \

Assuming ETH, there is no ! 20(Vn) )—time algorithm for MGS on interval graphs of

order n.












































































Chordal graphs

Theorem

MGS can be solved in time O (2> n°V) for chordal graphs and in time O (2¢n°()
for interval graphs, where n and w are the order and clique number of the input
graph, respectively.

@ Dynamic programming on the nice tree decomposition 7 of a chordal graph G.
\ —— e

@ Width of T is w.

@ Each bag or node of T is a clique cut-set.
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Chordal graphs (Proof sketch)

o With each bag X,, of T, associate O(2%“) many “types of partial solutions".



Chordal graphs (Proof sketch)

o With each bag X,, of T, associate O(2%“) many “types of partial solutions".

@ A “type of partial solution" 7 for a node X, is a 4-tuple (7', 7int, zcov rbas)
where
int

o T¢* and TV are collections of subsets of X,,,

o 7¢9V 7bag are subsets of X,



Chordal graphs (Proof sketch)

@ With each bag X, of T, associatany “types of partial solutions".

@ A “type of partial solution" 7 for a node X, is a 4-tuple (7', 7int, zcov rbas)

—

where A

o T¢* and '™
L “T—

cov are subsets of X,

are collections of subsets of X,,

T
— —

U

D is a solution of type T = (v, 7, 700 rhaa ) i f
p t \ = ;‘
) e } ?











































































































































































































































































































































Summary

Theorem

There is a linear time algorithm for MGS on solid grids.

Theorem
MGS is NP-hard on sub-cubic patial grids.

Theorem

MGS is NP-hard on interval graphs with no induced K s.

Theorem

MGS can be solved in time O (2> n®V) for chordal graphs and in time O (2¢n°)
for interval graphs, where n and w are the order and clique number of the input
graph, respectively.




Open problems

@ Polynomial time algorithm for Series-parallel graphs.
@ Improve the running time for Chordal graphs.
—

@ Constant factor approximation for planar graphs, interval graphs.
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