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City road network



A simplified practical problem

City road network

• Open minimum number of new bus terminals such that all other
cities are "covered".

• Assumption: Buses follow the shortest path between the terminals.



Definition

A set of vertices S of a graph G is a geodetic set if each vertex in
V (G ) \ S lies in some shortest path between some pair of vertices in S .

Minimum Geodetic Set

INPUT: An undirected graph G .
OUTPUT: A geodetic set of minimum cardinality.

Examples



Computing conundrum

Simplified practical problem = Hard theoretical problem.



Why I got interested in this topic

Algorithmic results before 2018

NP-hard: Chordal graphs, bipartite graphs, chordal bipartite graphs,
co-bipartite graphs.

Polynomial time algorithms: Distance hereditary graphs, split graphs,
ptolemaic graphs, outer-planar graphs, proper interval graphs.

Probably many (easy) open questions !!

Important questions

Question 1: Minimum Geodetic Set problem on planar graphs.

Question 2: Minimum Geodetic Set problem on interval graphs.

I started to work on the above from 2017.
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Our results

• NP-hardness for planar graphs and line graphs.

• O(log n)-hard on graphs with an universal vertex.

• O(n
1
3 log n)-approximation algorithm on general graphs.

• 3-approximation algorithm on solid grids.



Some proof ideas !!

• NP-hardness for planar graphs.

I Reduction from DOMINATING SET of planar graphs.
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Figure: Here, two vertex gadgets Gv , Gw are depicted, with v and w adjacent
in G . Dashed lines represent potential edges to other vertex-gadgets.



Some proof ideas !!

• O(n
1
3 log n)-approximation algorithm on general graphs.

I Reduction to Minimum Rainbow Subgraph problem.

Minimum Rainbow Subgraph

INPUT: An undirected edge-colored graph G .
OUTPUT: A subgraph containing edges of all colors with minimum
number of vertices.

I Given a graph G , construct an edge-colored graph H as follows.

I If w lies in some shortest path between u, v in G , then put an edge
having color “w” between u, v in H.

I Apply known O(n
1
3 log n)-approximation algorithm on Minimum

Rainbow Subgraph problem.

*On the Approximability of the Minimum Rainbow Subgraph Problem and Other Related

Problems. Sumedh Tirodkar, Sundar Vishwanathan. ISAAC 2015.



Some proof ideas !!

• O(n
1
3 log n)-approximation algorithm on general graphs.

I Reduction to Minimum Rainbow Subgraph problem.

Minimum Rainbow Subgraph

INPUT: An undirected edge-colored graph G .
OUTPUT: A subgraph containing edges of all colors with minimum
number of vertices.

I Given a graph G , construct an edge-colored graph H as follows.

I If w lies in some shortest path between u, v in G , then put an edge
having color “w” between u, v in H.

I Apply known O(n
1
3 log n)-approximation algorithm on Minimum

Rainbow Subgraph problem.

*On the Approximability of the Minimum Rainbow Subgraph Problem and Other Related

Problems. Sumedh Tirodkar, Sundar Vishwanathan. ISAAC 2015.



Some proof ideas !!

• O(n
1
3 log n)-approximation algorithm on general graphs.

I Reduction to Minimum Rainbow Subgraph problem.

Minimum Rainbow Subgraph

INPUT: An undirected edge-colored graph G .
OUTPUT: A subgraph containing edges of all colors with minimum
number of vertices.

I Given a graph G , construct an edge-colored graph H as follows.

I If w lies in some shortest path between u, v in G , then put an edge
having color “w” between u, v in H.

I Apply known O(n
1
3 log n)-approximation algorithm on Minimum

Rainbow Subgraph problem.

*On the Approximability of the Minimum Rainbow Subgraph Problem and Other Related

Problems. Sumedh Tirodkar, Sundar Vishwanathan. ISAAC 2015.



Some proof ideas !!

• O(n
1
3 log n)-approximation algorithm on general graphs.

I Reduction to Minimum Rainbow Subgraph problem.

Minimum Rainbow Subgraph

INPUT: An undirected edge-colored graph G .
OUTPUT: A subgraph containing edges of all colors with minimum
number of vertices.

I Given a graph G , construct an edge-colored graph H as follows.

I If w lies in some shortest path between u, v in G , then put an edge
having color “w” between u, v in H.

I Apply known O(n
1
3 log n)-approximation algorithm on Minimum

Rainbow Subgraph problem.

*On the Approximability of the Minimum Rainbow Subgraph Problem and Other Related

Problems. Sumedh Tirodkar, Sundar Vishwanathan. ISAAC 2015.



Some proof ideas !!

• 3-approximation algorithm on solid grids.

I A path P of a solid grid is a corner path if (i) no vertex of P is a cut
vertex, (ii) both end-vertices of P have degree 2, and (iii) all vertices
except the end-vertices of P have degree 3.

Lemma: Any geodetic set must contain (i) all pendent vertices and (ii) at
least one vertex from each corner path.

Our approximation algorithm: Select all pendent vertices and both
end-vertices of each corner path.
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The future

• Polynomial time optimal algorithms on solid grids.

• Polynomial time optimal algorithms on partial grids.

• Polynomial time optimal algorithms on interval graphs.

• FPT or approximation algorithms on planar graphs.

• FPT or approximation algorithms on chordal graphs.

• Approximation algorithms on diameter 2 graphs.
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Thank you !!


