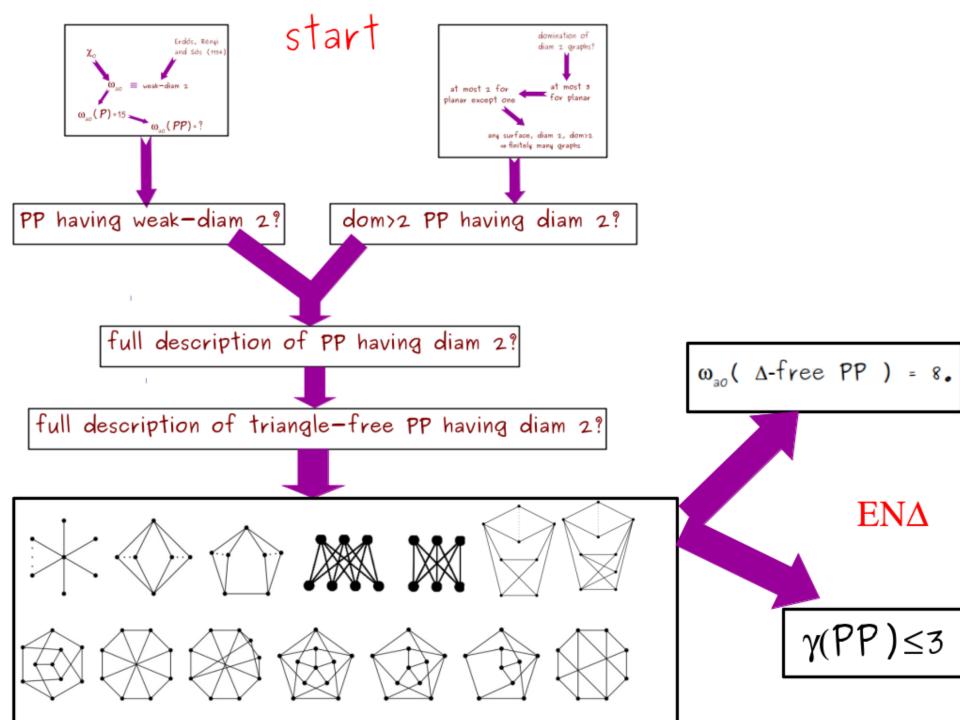
Triangle-free projective planar graphs with diameter 2: domination and characterization

Dibyayan Chakraborty, Sandip Das, Srijit Mukherjee, Uma kant Sahoo, Sagnik Sen

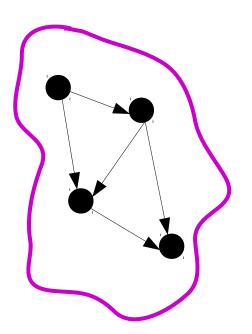
> ICGT 2018 Lyon, France

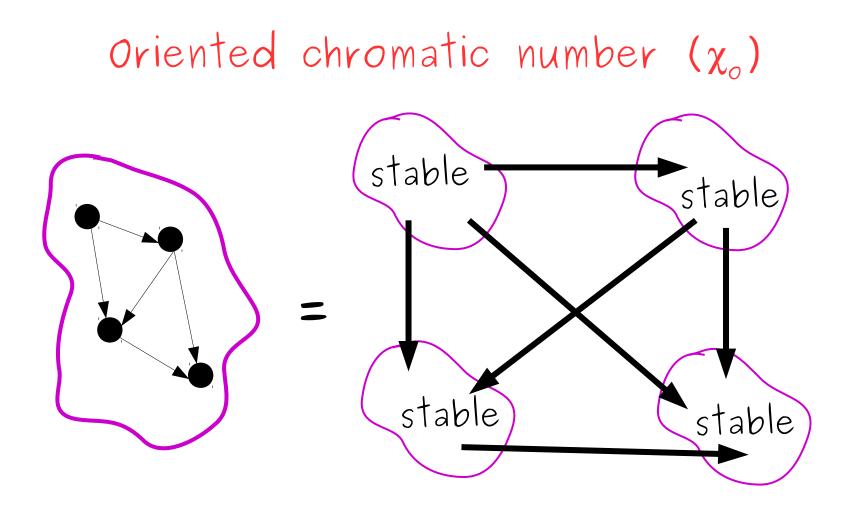
12 July, 2018

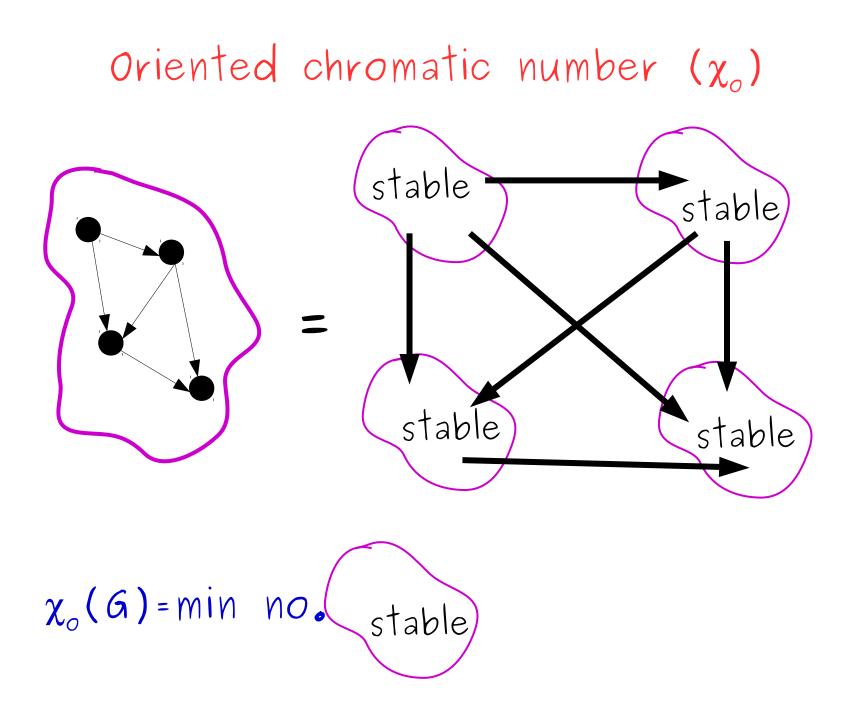


Oriented chromatic number (χ_o)

Oriented chromatic number (χ_o)







χ_{o}

Oriented clique number (ω_{ao})

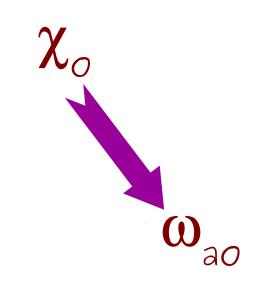
Oriented clique number (ω_{ao})

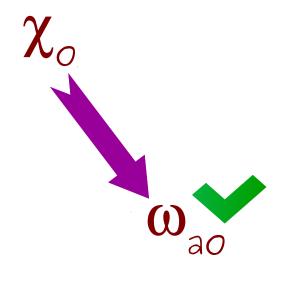
0 is an oriented clique if $\chi_o(0) = |V(0)|$

Oriented clique number (ω_{ao})

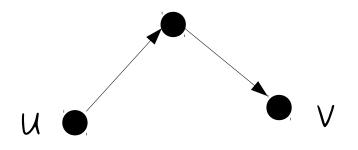
0 is an oriented clique if $\chi_o(0) = |V(0)|$

$\omega_{ao}(G) = \max\{|V(O)| : O \subseteq G\}$

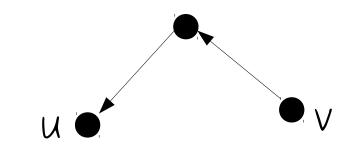


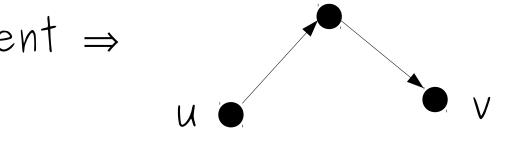


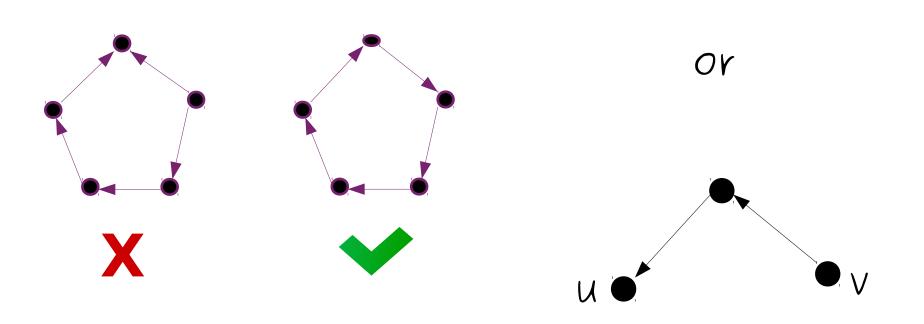
$$u, v \text{ non-adjacent} \Rightarrow$$

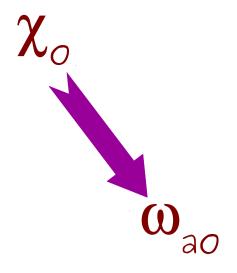


$$u, v \text{ non-adjacent} \Rightarrow$$

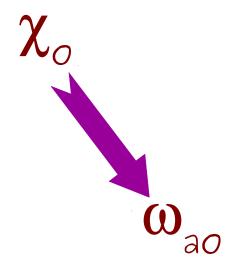


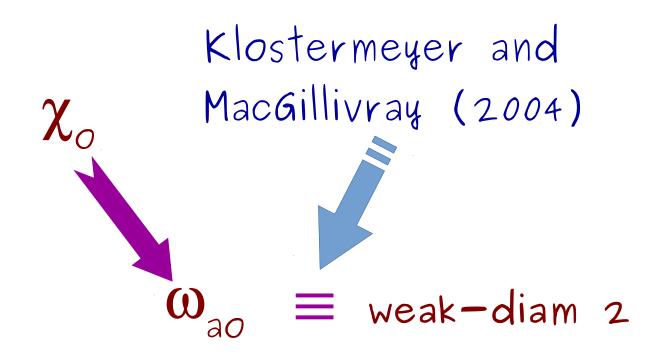


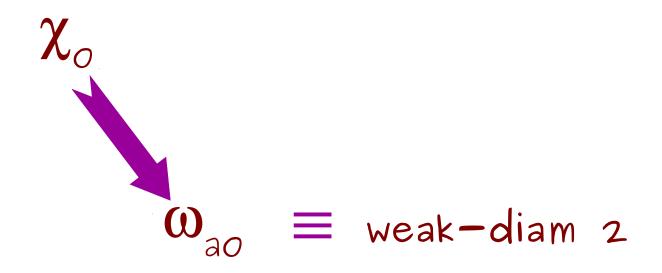


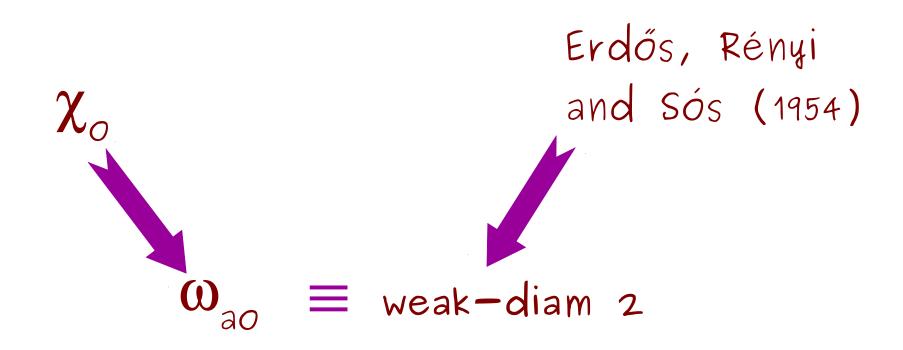


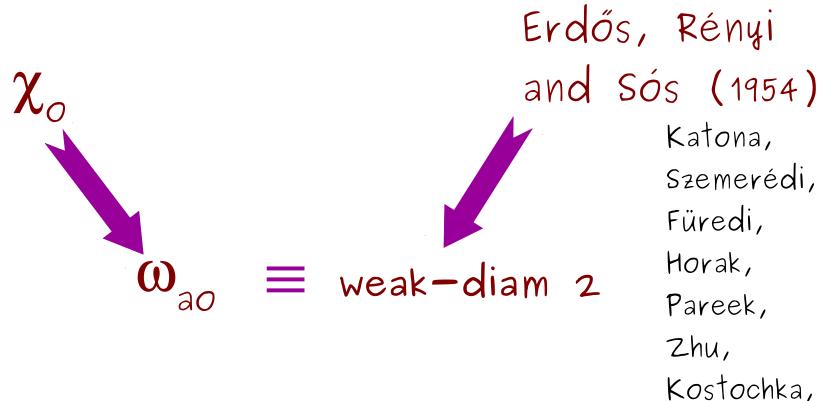
weak-diam 2









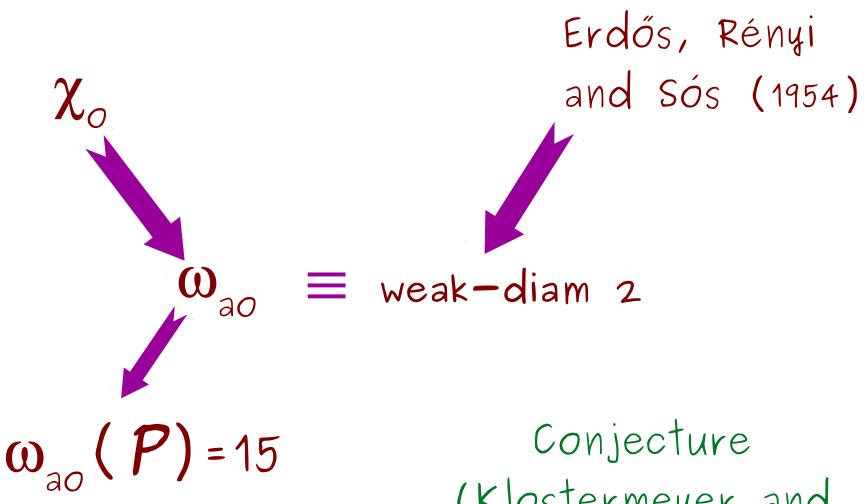


Kostochka Luczak, Simonyi, Sopena,

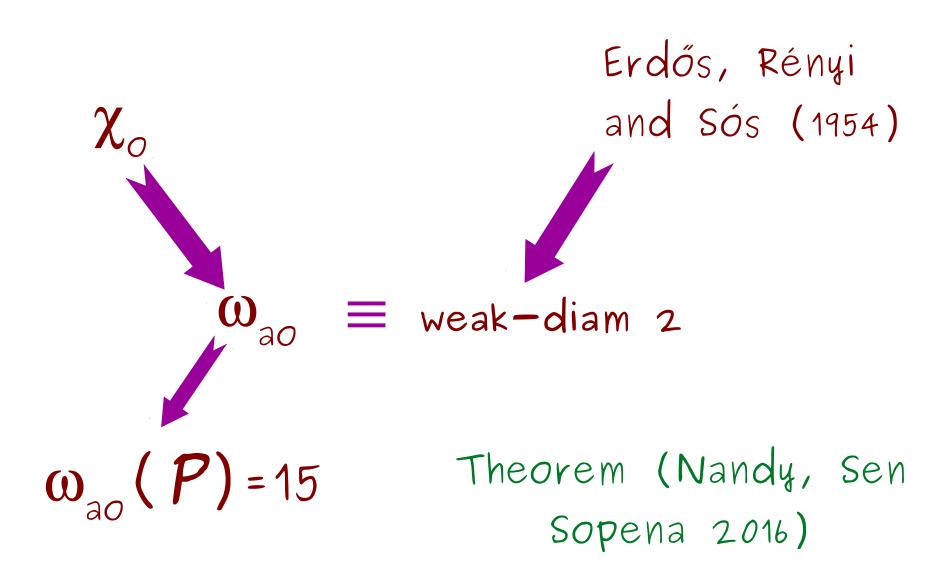
Kirgizov,

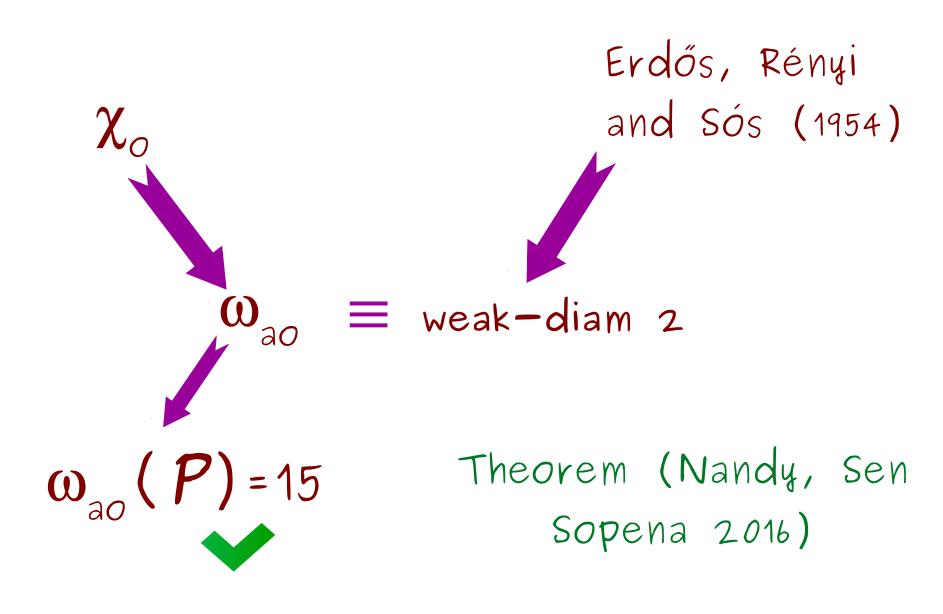
Duvignan,

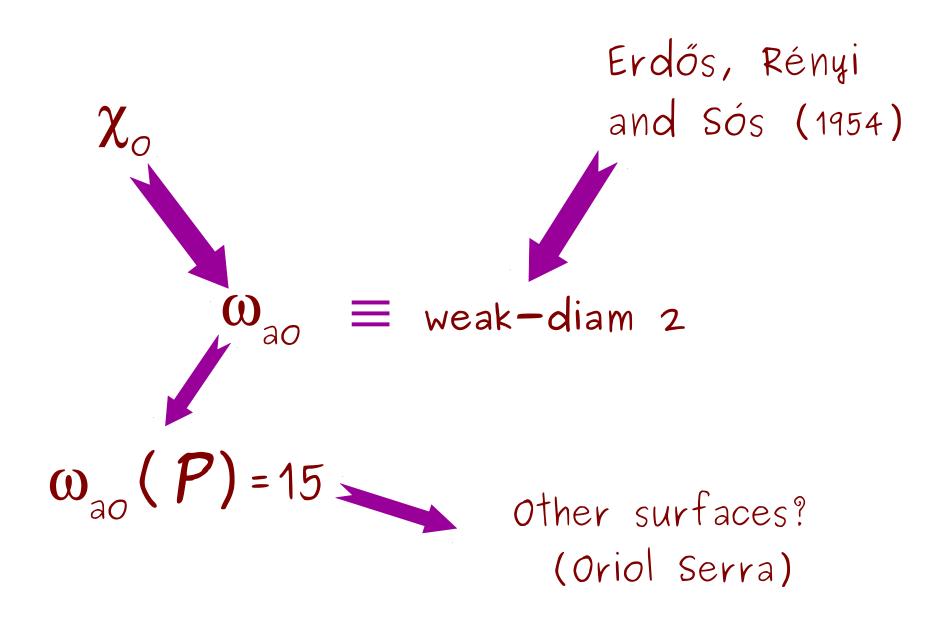
Bensmail

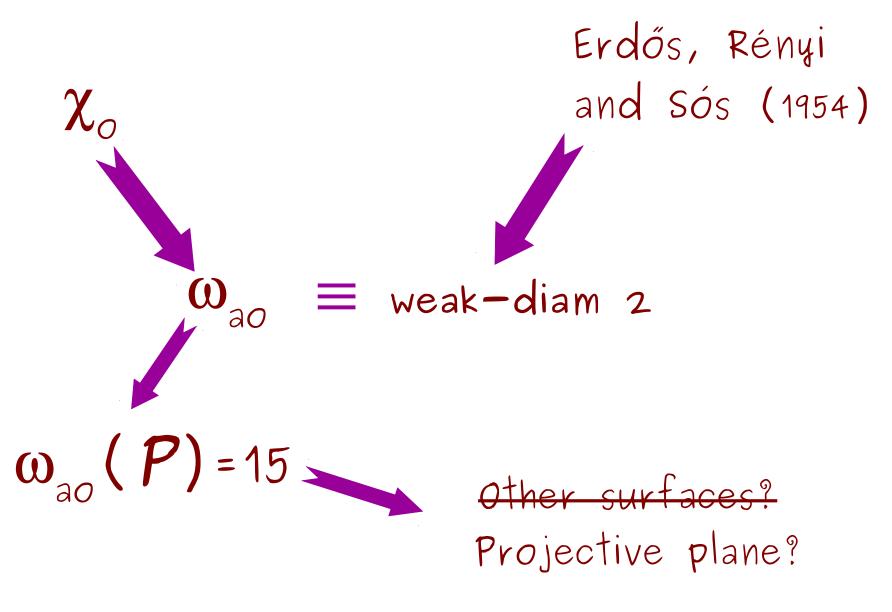


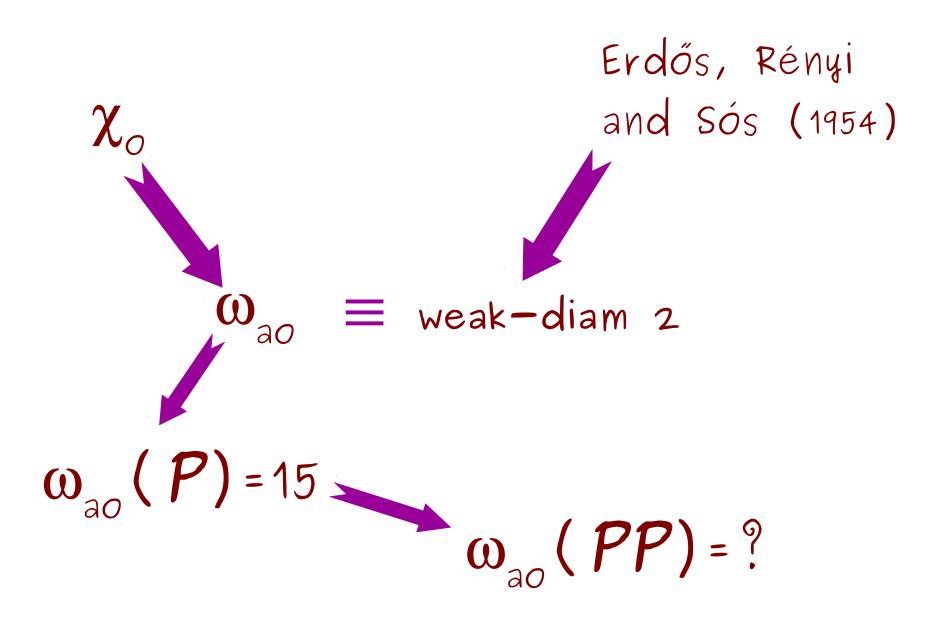
(Klostermeyer and MacGillivray 2004)

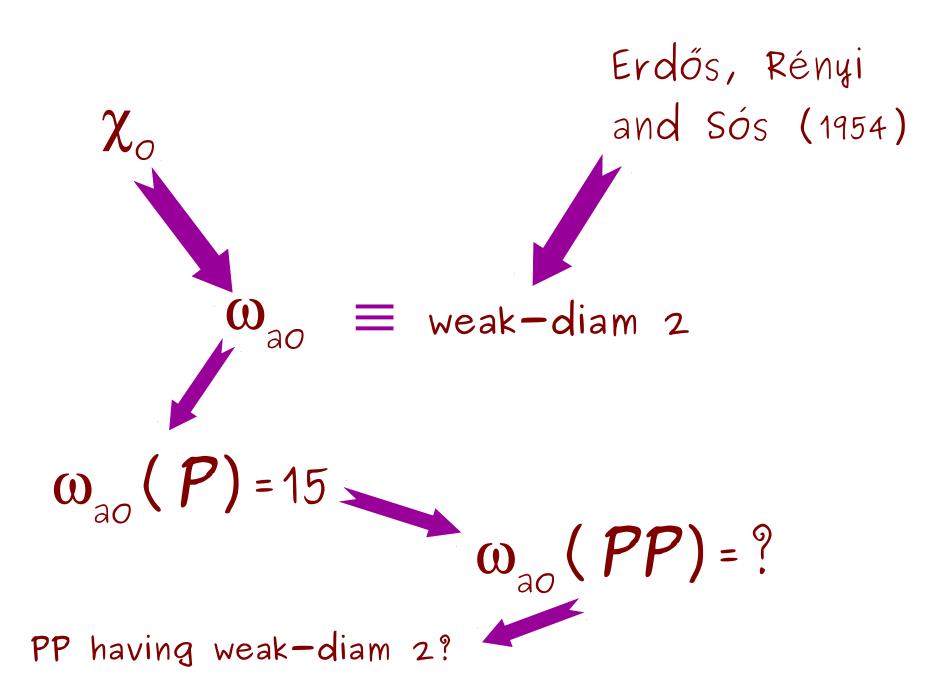


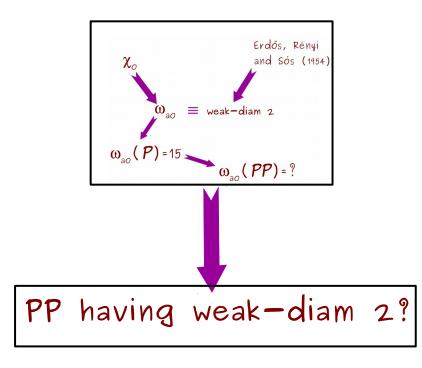


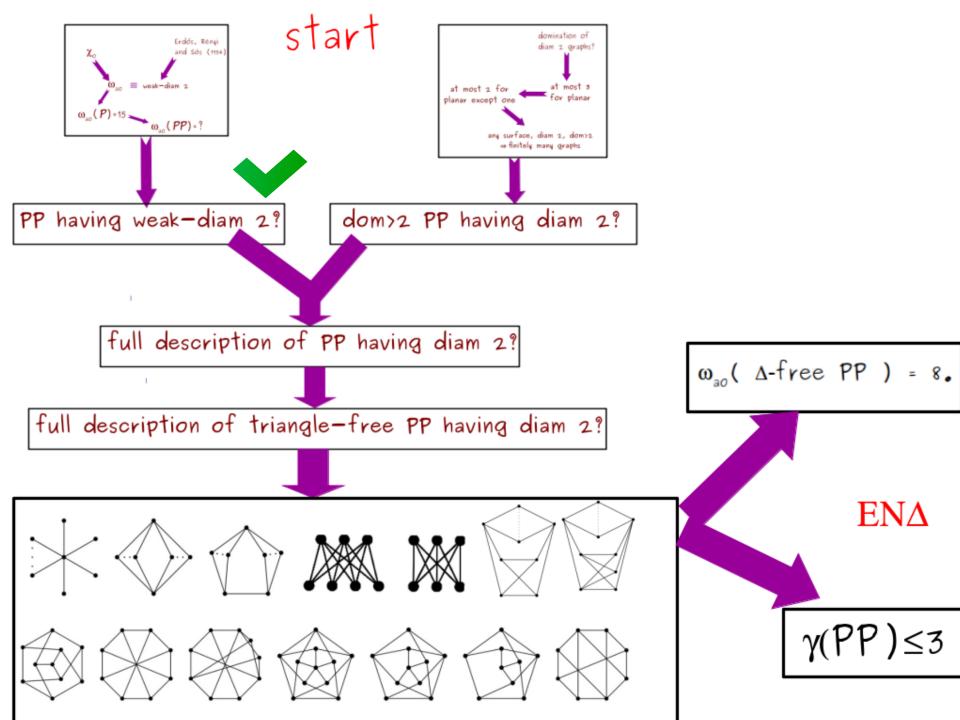




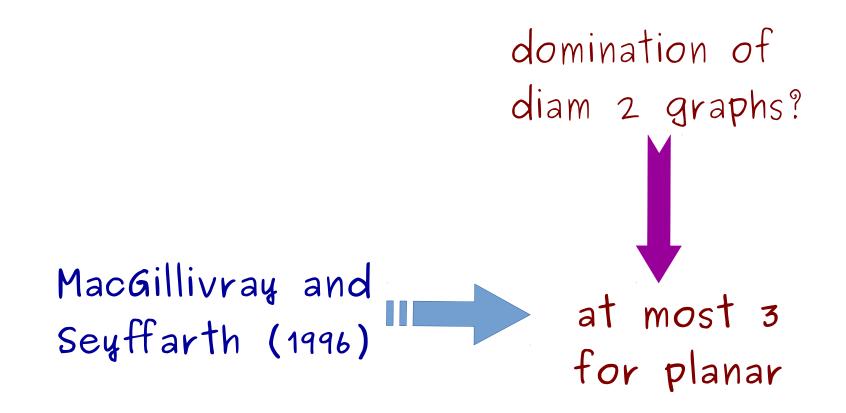


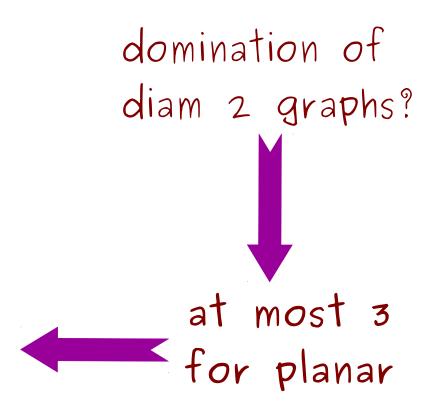


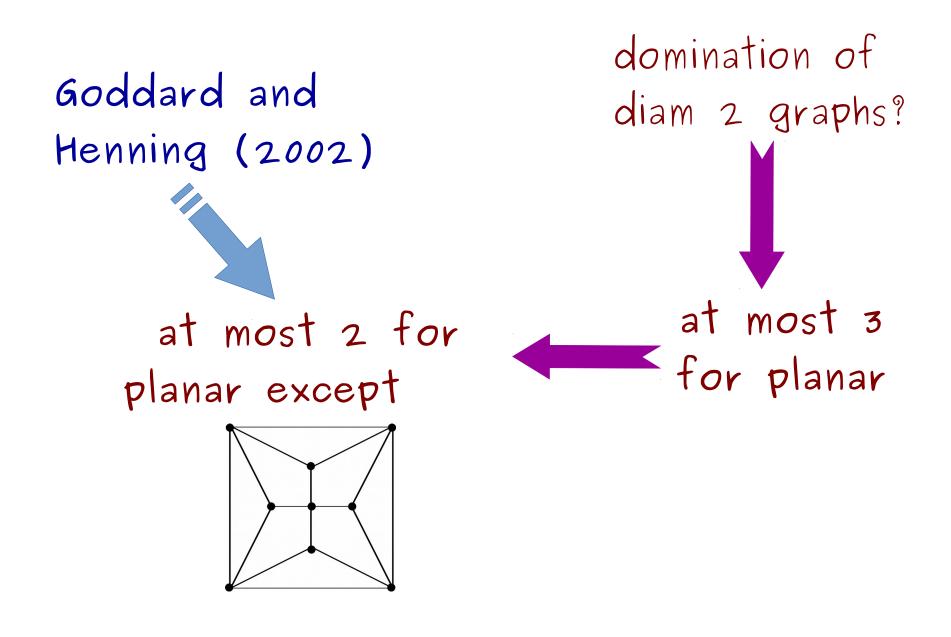


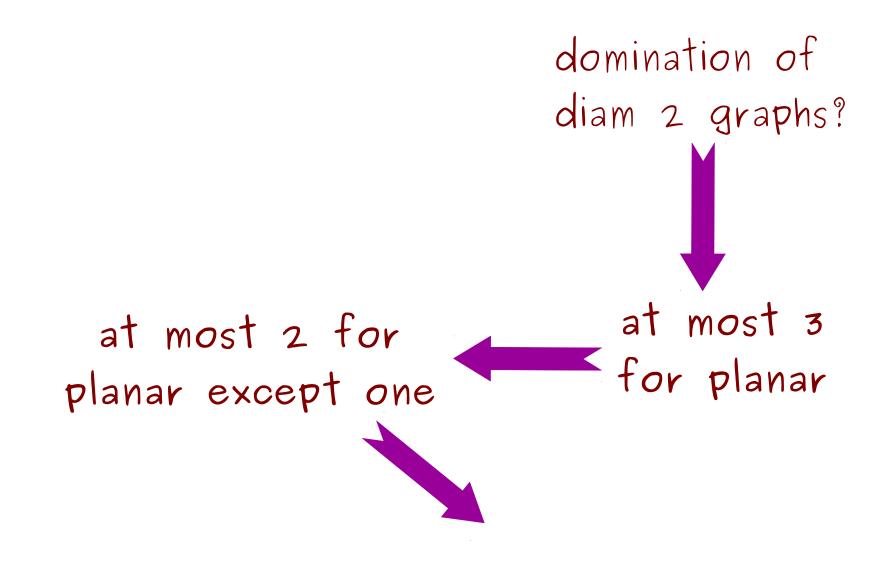


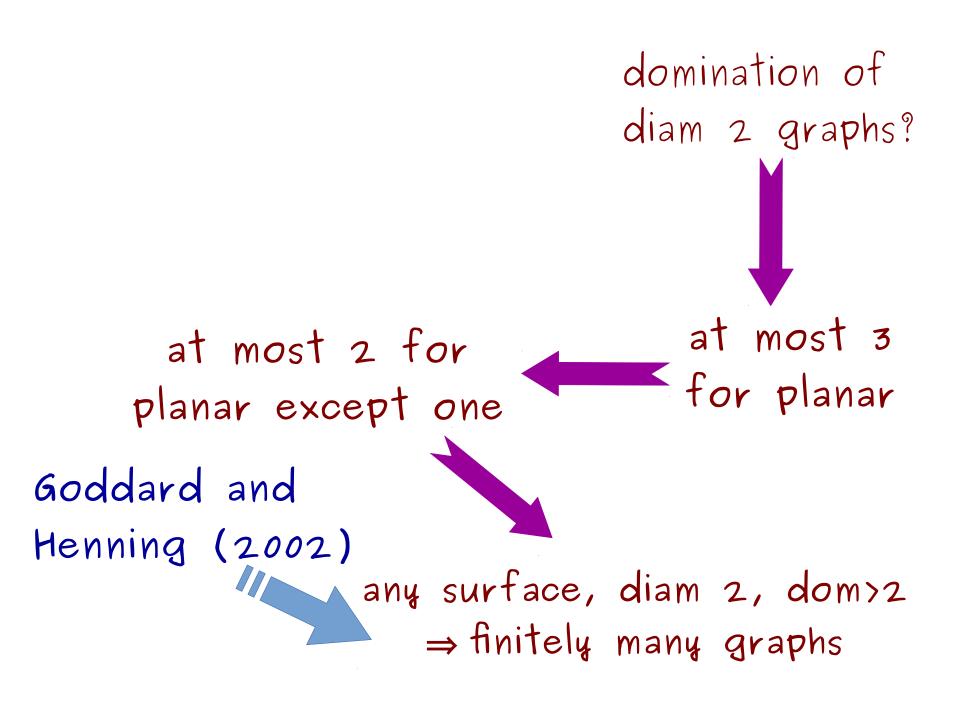
domination of diam 2 graphs?

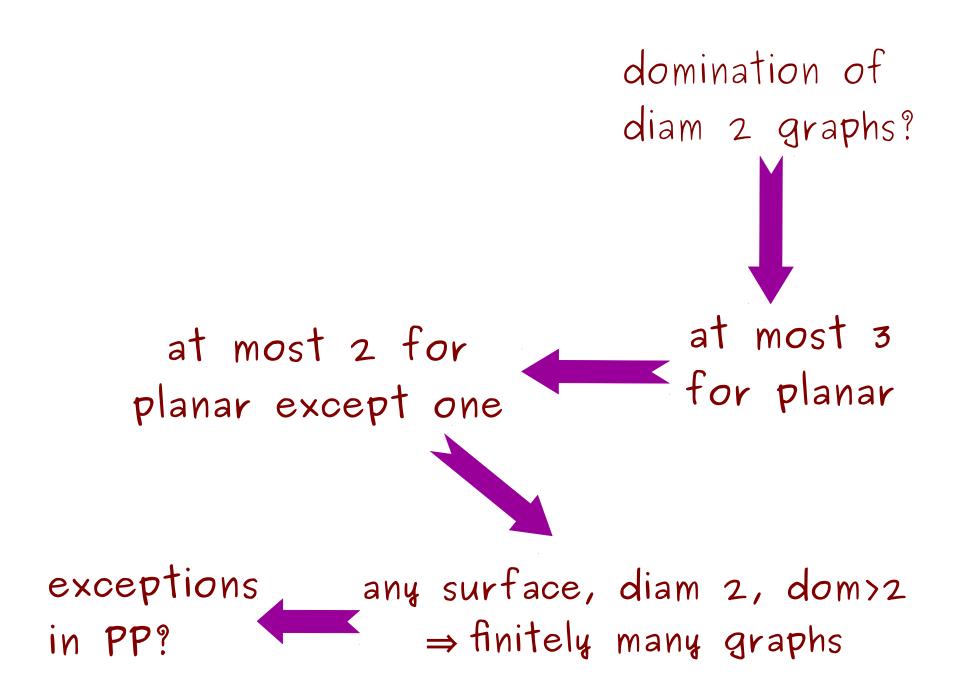


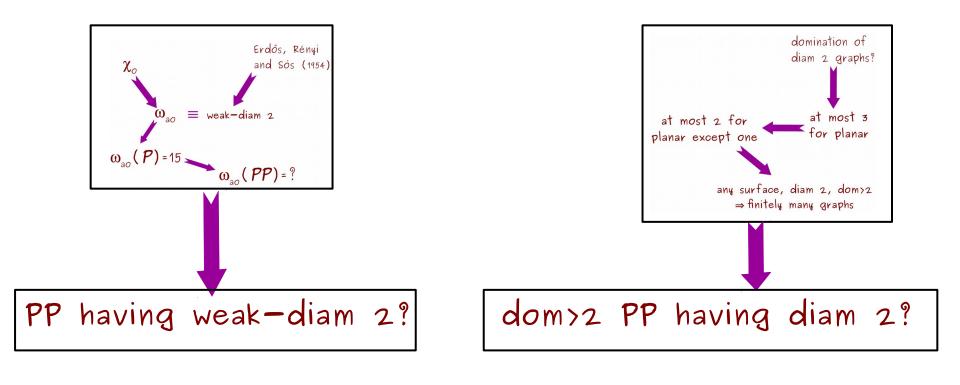


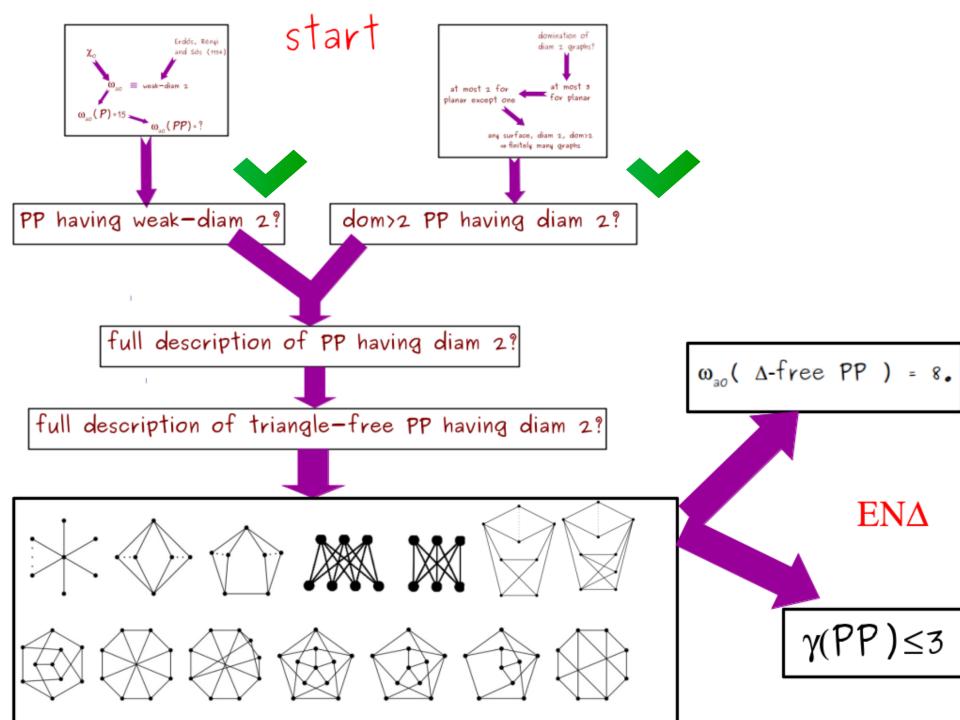


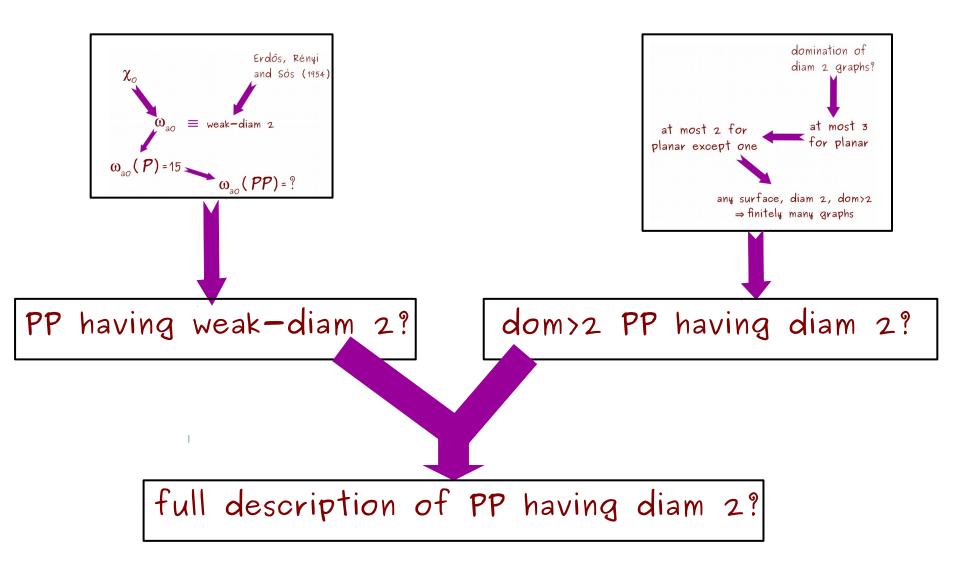


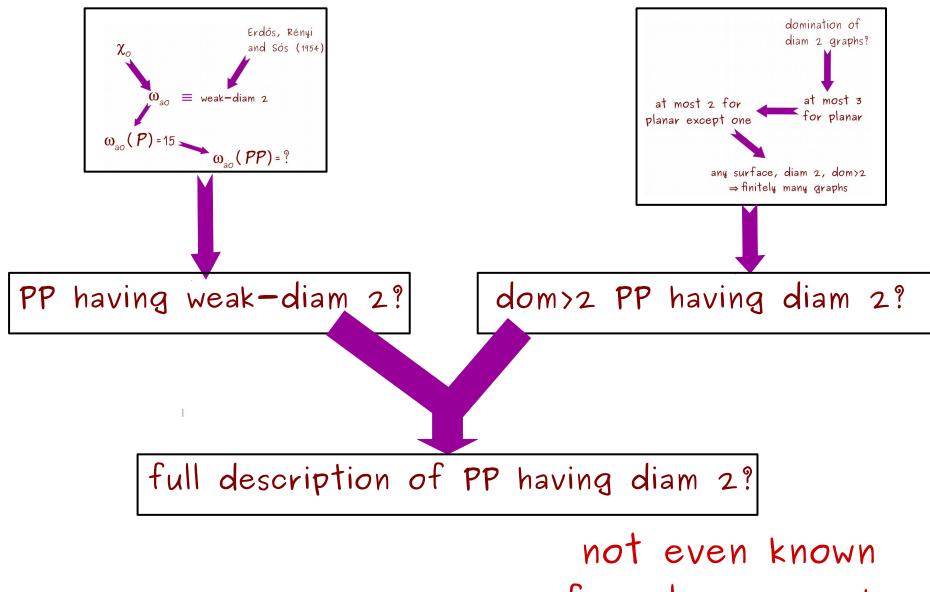




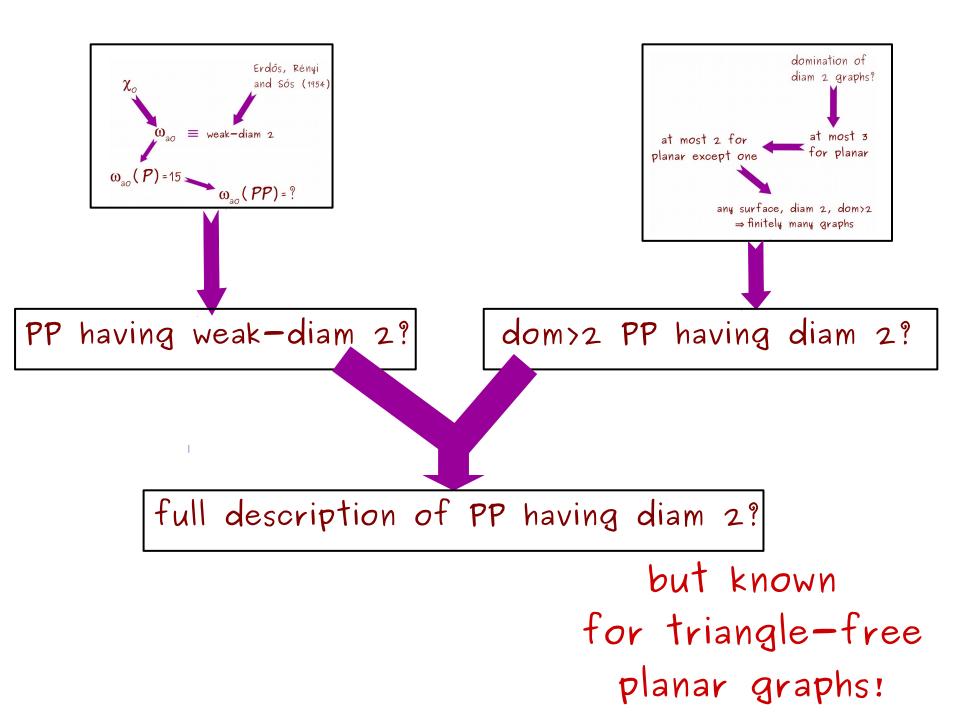






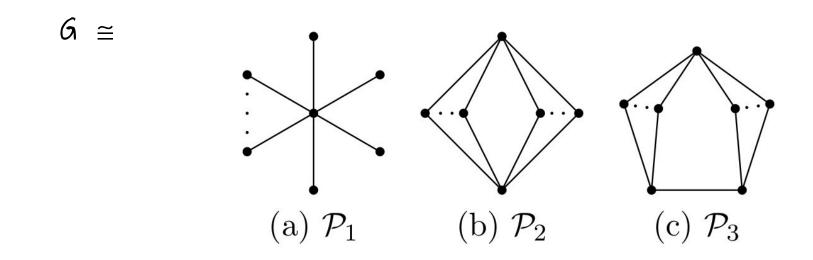


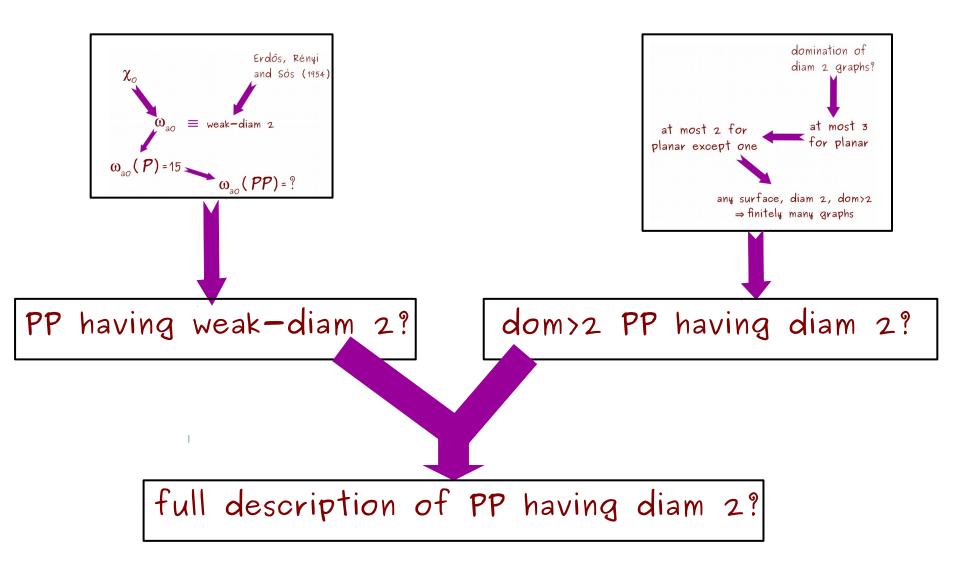
for planar graphs!

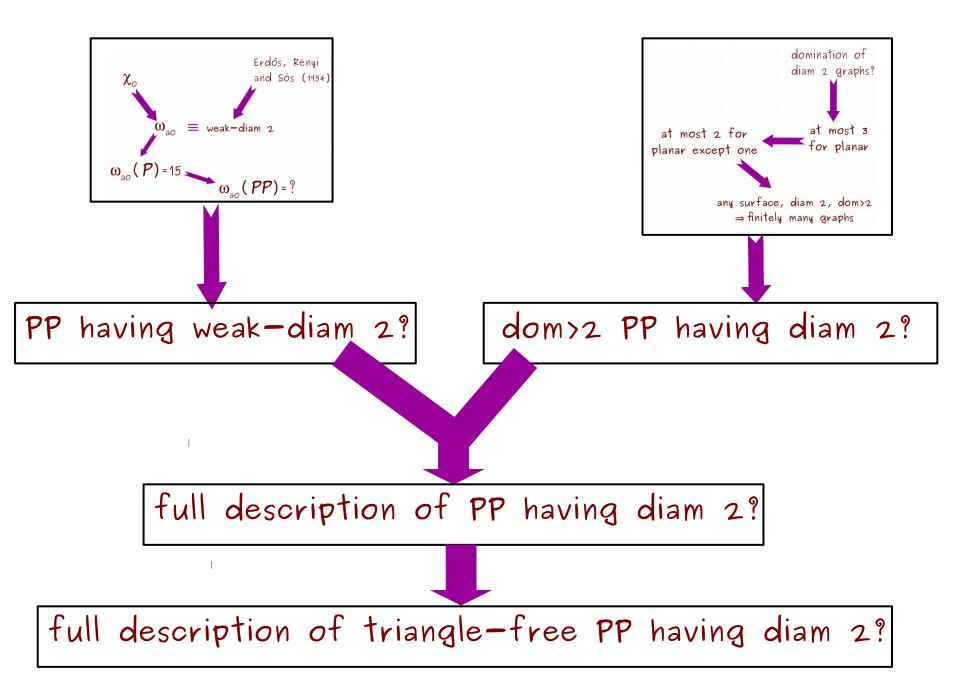


Known result

Theorem (Plesník 1975): Let G be Δ -free with diam 2. Then G is planar iff

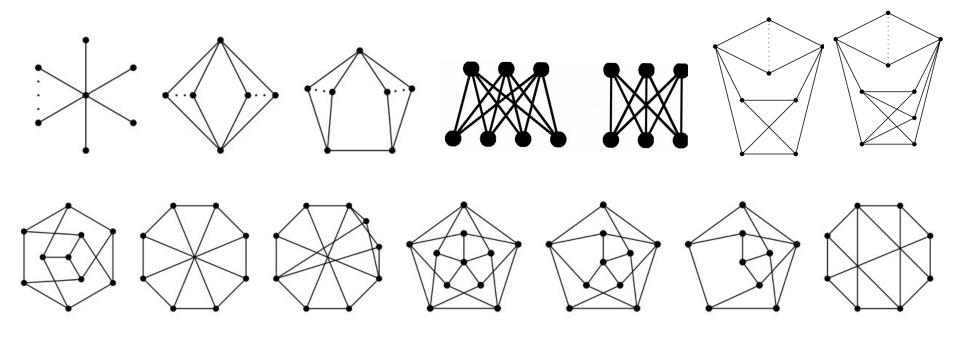






Our results

Theorem: Let G be Δ -free with diam 2. Then G is projective planar iff G is one of:

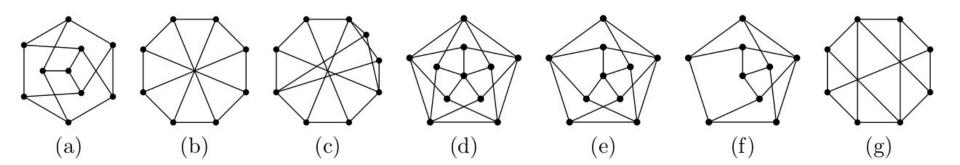


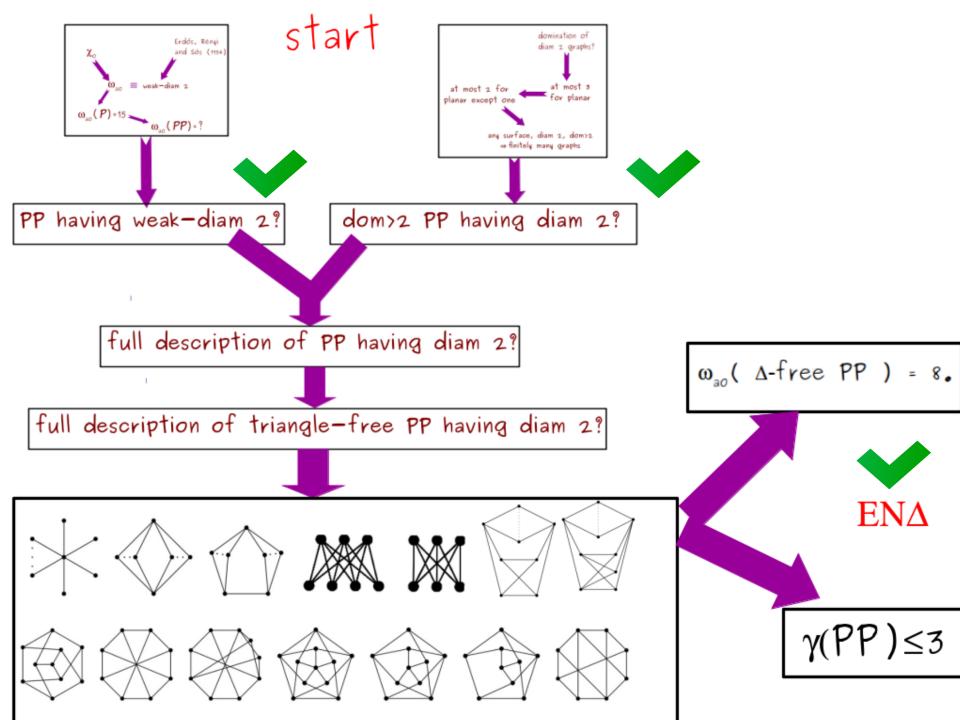
Implication

Theorem: ω_{ao} (Δ -free PP) = 8.

Implication

Theorem: Let G be Δ -free PPG with diam 2. Then domination number of G is 3 iff G is one of:



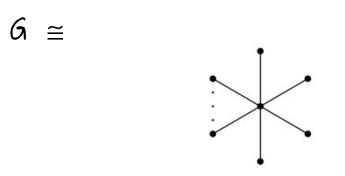


time for a proof sketch ...

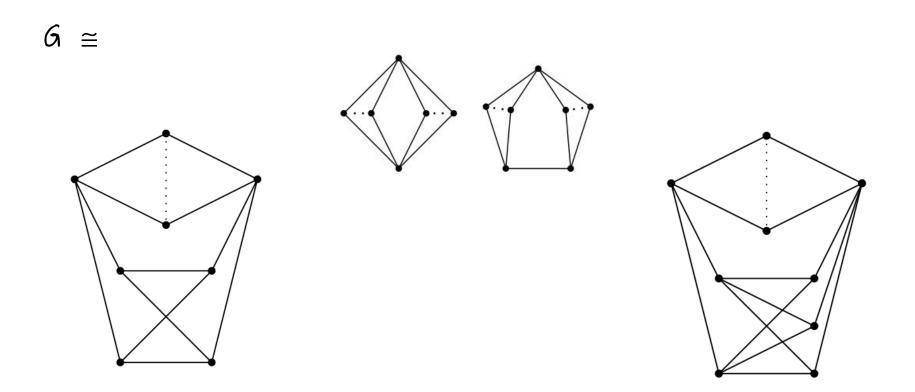
Observation: Let G be a Δ -free PP with diam 2. Then min degree of G is at most 3.

Euler's Formula

Observation: Let G be a Δ -free with diam 2 and min. degree = 1. Then G is PP iff

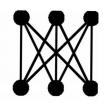


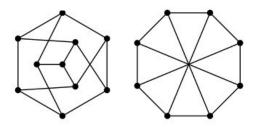
Lemma: Let G be a Δ -free with diam 2 and min. degree = 2. Then G is PP iff



Lemma: Let G be 3-regular Δ -free with diam 2. Then G is PP iff

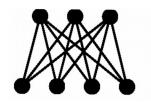
6 ≅

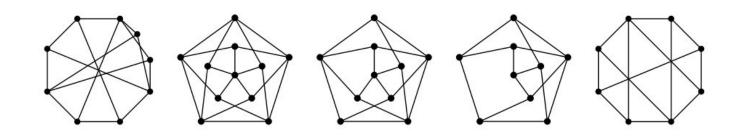




Lemma: Let G be Δ -free with diam 2, min degree = 3, max-degree ≥ 4 . Then G is PP iff

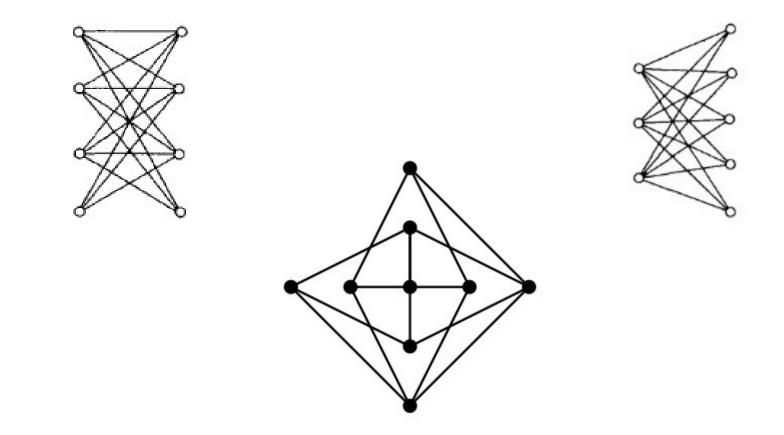
6 ≅





Results

Theorem: Let G be Δ -free with diam 2. Then G is PP iff G does not contain following as minor.



Thank you