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 O is an oriented clique if o(O)=|V(O)| 

 ao(G)=max{|V(O)| : OG} 
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but known 
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Theorem (Plesník 1975): Let G be D-free with diam 2. 
Then G is planar if

G  

Known result
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Theorem: Let G be D-free with diam 2. Then G is 
projective planar if G is one of:

Our results



Implication

Theorem: ao( D-free PP ) = 8.   
 



Implication

Theorem: Let G be D-free PPG with diam 2. Then 
domination number of G is 3 if G is one of:





time for a proof sketch...



Proof

Observation: Let G be a D-free PP with diam 2. 
Then min degree of G is at most 3.

Euler’s Formula



Observation: Let G be a D-free with diam 2 and min. 
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Lemma: Let G be 3-regular D-free with diam 2. 
Then G is PP if 
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Lemma: Let G be D-free with diam 2, 
min degree =3 , max-degree . Then G is PP if

G 

Proof



Results

Theorem: Let G be D-free with diam 2. Then G is 
PP if G does not contain following as minor.
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