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Interval graph

Lemma

A graph G=(V,FE) is a rectangle intersection graph if and only if

there are interval graphs I, =(V,E;), I, =(V,E;) with E=FE, nE,




Rectangles make it difficult

Recfangle infersection | Inferval graph
graph
Recognition NP—Hard Polynomial
Coloring NP—Hard Polynomial
Cligue number Polynomial Polynomial
Cligue cover NP—Hard Polynomial
Maximum independent 'NP—Hard Polynomial
set




In this paper, we focus on a more restricted
tamiliy called

rectangle intersection graphs with
sTab number Two
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2—stabbed rectangle

“ intersection

representation




Definition

2—stabbed rectangle

) ieisection

representation

A graph G is a rectangle intersection graph with stab number
two (2—SR1aG) it

G has a2—stabbed rectangle infersection representation



In this paper, we study the coloring problem on
2—SR1Gs



Our Resulls on Coloring
2—SR16s

Theorem 1
The CHROMATIC NUMBER problem is NP-Hard even on 2-SRIGs.
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Our Resulls on Coloring
2—SR16s

Theorem 1
The CHROMATIC NUMBER problem is NP-Hard even on 2-SRIGs. ]

Observe that

For any 2-SRIG H, x(H)<2w(H).

Theorem 2

There is a 2-SRIG H with x(H)= [3«U=17, ]




Proot Sketfch
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Proot Sketfch

Theorem 1 Theorem 2

Lemma 3 |

For a circular-arc graph G and an integer k, there is a 2-SRIG H,

such that x(G) <k if and only if x(H.) <k.




Proot Skefch: Lemma 3
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Proot Sketch: Lemma 3
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In this paper, we sfudy structural properties of
subclasses of 2—SR1Gs
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MoTivaTion

Infersection graphs of proper sef
of intervals,



Interval
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Proper Interval
graphs

|

Unit interval
qraphs

MoTivaTion

Infersection graphs of intervals of
unit length,



MoTivaTion

Define analogous graph classes for 2—SRI16 and
sfudy the containment relationship among them,



Our Result

Theorem 3

2-SUIG = (U,U)-graphs C (P,U)-graphs = (P,P)-graphs Cc (7,U)-graphs
= (J,P)-graphs C 2-ESRIG = 2-SRIG.
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Our Result

2—SR16

(P,P)—graph : Graphs having a 2—stabbed representation such fhat
(i) rectangles intersecting the top stab line gives a proper set

ot infervals and
(ii) rvectangles infersecting The bottom stab line also gives a

proper set of infervals,
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2—SR16

i Theorem 4
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Our Result

Let G be a triangle-free graph. There is an O(|V(G)|)-time algorithm

to decide if G is a (%,7P)-graph.
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Our Result

2—SR16

» (U,U)—graph

(U, U)=araph : Graphs having a 2—stabbed representation such that
(i) vectangles intersecting the top stab line gives a set of unit

intervals and

(ii) rvectangles infersecting the bottom stab line also gives a set
ot unit intervals,
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Our Result
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» (1,P)—graph «—
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(I,V)—graph

(P,P)—graph «—»

(P,U)—graph

(VU,V)—graph
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Our Result

2—SR1aG » (1,P)—graphe—(1,V)—graph

2—ESRIG (P,P)—graph«—» (P,U)—graph

» (U,V)—graph

!

2—SV16

Theorem 3

2-SUIG = (U,U)-graphs C (P,U)-graphs = (P, P)-graphs C (J,U)-graphs
= (J,%)-graphs C 2-ESRIG = 2-SRIG.
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We proved that

There is a 2-SRIG H such that x(H)=[3«UD=17 2

——

Question 1
Is it true that for any 2-SRIG H we have y(H)< 3«H) 2




Summary and Open Problems

We proved That

There is a 2-SRIG H such that x(H)=[3«U0=1] 2

QuesTtion 1

Is it true that for any 2-SRIG H we have x(H)< 3<{) 2

Question 2 ]

F

Is there a constant ¢ such that for any rectangle intersection graph

H we have x(H)<c-w(H) ?




Summary and Open Problems

We proved that

given a triangle-free graph G, there is an O(|V(G)|)-time algorithm

to decide if G 1is a (77,7P)-graph.




Summary and Open Problems

J We proved that

given a triangle-free graph G, there is an O(|V(G)|)-time algorithm

to decide if G 1is a (77,7P)-graph.

-

Question 3

Is there a polynomial time algorithm to recognise (/”,7)-graphs ?




Thank you
tor your
attention.
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