On rectangle intersection graphs with stab number two

Dibyayan Chakraborty, Sandip Das, Mathew C. Francis, Sagnik Sen

CALDAM 2019

IIT Kgp, 14 February, 2019

Generalisation of interval graphs

Rectangles make it difficult !

	Rectangle intersection graph	Interval graph
Recognition	NP-Hard	Polynomial
Coloring	NP-Hard	Polynomial
Clique number	Polynomial	Polynomial
Clique cover	NP-Hard	Polynomial
Maximum independent set	NP-Hard	Polynomial

In this paper, we focus on a more restricted familiy called

rectangle intersection graphs with stab number two

2-stabbed rectangle intersection representation

A graph G is a rectangle intersection graph with stab number two (2-SRIG) if

6 has a 2-stabbed rectangle intersection representation

In this paper, we study the coloring problem on 2-SRIGs

Our Results on Coloring 2-SRIGs

Theorem 1

The CHROMATIC NUMBER problem is NP-Hard even on 2-SRIGs.

Our Results on Coloring 2-SRIGs

Theorem 1

The CHROMATIC NUMBER problem is NP-Hard even on 2-SRIGs.

Observe that

For any 2-SRIG H, $\chi(H) \leq 2\omega(H)$.

Our Results on Coloring 2-SRIGs

Theorem 1

The CHROMATIC NUMBER problem is NP-Hard even on 2-SRIGs.

For any 2-SRIG H, $\chi(H) \leq 2\omega(H)$.

Theorem 2

There is a 2-SRIG H with $\chi(H) = \lceil \frac{3\omega(H)-1}{2} \rceil$.

Proof Sketch

Theorem 1

Theorem 2

Proof Sketch: Lemma 3

In this paper, we study structural properties of subclasses of 2-SRIGs

Intersection graphs of proper set of intervals.

Intersection graphs of intervals of unit length.

Define analogous graph classes for 2-SRIG and study the containment relationship among them.

Our Result

Theorem 3

Our Result

(P,P)-graph : Graphs having a 2-stabled representation such that (i) rectangles intersecting the top stab line gives a proper set of intervals and (ii) rectangles intersecting the bottom stab line also gives a proper set of intervals.

Our Result

(3x4)-grid

Let G be a triangle-free graph. There is an O(|V(G)|)-time algorithm to decide if G is a $(\mathcal{P}, \mathcal{P})$ -graph.

(U,U)-graph: Graphs having a 2-stabled representation such that (i) rectangles intersecting the top stab line gives a set of unit intervals and (ii) rectangles intersecting the bottom stab line also gives a set of unit intervals.

Summary and Open Problems We proved that There is a 2-SRIG H such that $\chi(H) = \left\lceil \frac{3\omega(H)-1}{2} \right\rceil$?

Summary and Open Problems
We proved that
There is a 2-SRIG H such that
$$\chi(H) = \lceil \frac{3\omega(H)-1}{2} \rceil$$
?
Question 1
Is it true that for any 2-SRIG H we have $\chi(H) \leq \frac{3\omega(H)}{2}$?

Summary and Open Problems
We proved that
There is a 2-SRIG H such that
$$\chi(H) = \lceil \frac{3\omega(H)-1}{2} \rceil$$
?
Question 1
Is it true that for any 2-SRIG H we have $\chi(H) \le \frac{3\omega(H)}{2}$?
Question 2
Is there a constant c such that for any rectangle intersection graph
H we have $\chi(H) \le c \cdot \omega(H)$?

Summary and Open Problems

We proved that

given a triangle-free graph G, there is an O(|V(G)|)-time algorithm

to decide if G is a $(\mathcal{P}, \mathcal{P})$ -graph.

Summary and Open Problems

We proved that

given a triangle-free graph G, there is an O(|V(G)|)-time algorithm

to decide if G is a $(\mathcal{P}, \mathcal{P})$ -graph.

Question 3

Is there a polynomial time algorithm to recognise $(\mathcal{P}, \mathcal{P})$ -graphs ?

Thank you for your attention.