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Abstract

A rectangle intersection representation R of a graph G with vertex

set V (G) and edge set E(G) is a collection of axis-parallel rectangles

{Ru}u∈V (G) such that uv ∈ E(G) if and only if Ru, Rv intersect. If a

graph has a rectangle intersection representation then it is a rectangle

intersection graph. We introduce a parameter called stab number of rect-

angle intersection graphs and study the structural properties of rectangle

intersection graphs with bounded stab number. We introduce a natural

generalisation of “asteroidal triples” and show that certain structures are

forbidden in rectangle intersection graphs. We also propose polynomial-

time recognition algorithms for several subclasses of rectangle intersection

graphs with stab number at most 3.

A rectangle overlap representation R of a graph G is a collection of

rectangles {Ru}u∈V (G) such that uv ∈ E(G) if and only if the boundaries

of Ru, Rv intersect. A graph is a rectangle overlap graph if it has a

rectangle overlap representation. The classes of rectangle intersection

graphs and rectangle overlap graphs are subclasses of string graphs, the

intersection graphs of simple curves on the plane. We propose constant

factor approximation algorithms for the Minimum Dominating Set

problem on subclasses of rectangle overlap graphs and string graphs.
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Introduction

Contents

1.1 Characterisation of geometric intersection graphs . . 3

1.2 Bounds on various parameters of geometric intersec-

tion graphs . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Computational complexity of algorithmic problems

on geometric intersection graphs . . . . . . . . . . . 10

1.3.1 Recognition algorithms for geometric inter-

section graphs . . . . . . . . . . . . . . . . . 10

1.3.2 Algorithms for optimisation problems on ge-

ometric intersection graphs . . . . . . . . . . 13

1.4 Contributions and thesis overview . . . . . . . . . . 18

1.4.1 Stab number of rectangle intersection graphs 18
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1.4.2 Rectangle intersection graphs of stab number

at most 2 . . . . . . . . . . . . . . . . . . . 19

1.4.3 Recognising trees that are 2-SUIG . . . . . . 19

1.4.4 Dominating set of stabbed rectangle overlap

graphs . . . . . . . . . . . . . . . . . . . . . 20

1.4.5 Dominating set of vertically-stabbed L-graphs

and unit Bk-VPG graphs . . . . . . . . . . . 20

1.4.6 Conclusion . . . . . . . . . . . . . . . . . . . 20

Given a collection of sets, C, the intersection graph of C is the graph,

whose vertices correspond to the elements of C, and two vertices are joined

by an edge if and only if the corresponding sets have a nonempty inter-

section. When C is a collection of geometric objects, the corresponding

class of intersection graphs is a geometric intersection graph.

A popular graph class is the intersection graphs of intervals on the

real line, i.e., interval graphs. Study of interval graphs dates back to the

1950s. Benzer [17] established a direct relation between interval graphs

and arrangements of genes in the chromosome. Later, researchers have

encountered interval graphs in applications like scheduling, seriation in ar-

chaeology, behavioural psychology, planning, medical diagnosis, temporal

reasoning in artificial intelligence, circuit design etc. [89, 91, 92, 105, 133].

Researchers have studied graph classes like circular-arc graphs, probe

interval graphs, rectangle intersection graphs, disk graphs, segment

graphs [145] etc. These graph classes are generalisations of interval graphs

and are intersection graphs of simple curves on the plane i.e. string

graphs. Any intersection graph of arc-connected sets on the plane is a

string graph. But not all graphs are string graphs [71]. Hence, there

are some graphs that are not intersection graphs of any collection of arc-

connected two-dimensional sets. But such graphs are intersection graphs

of higher-dimensional geometric objects, and this motivates the study

of higher-dimensional analogues of interval graphs. Roberts [138] intro-

2



duced the notion of boxicity of a graph G, which is the minimum integer d

such that G is an intersection graph of d-dimensional rectangles. A graph

has boxicity 1 if it is an interval graph. Apart from being of theoretical

interests, the graph classes mentioned above have proven to be useful

tools for modelling applications from various domains [17, 20, 104, 139].

Naturally, researchers have studied geometric intersection graphs. We di-

vide the entire literature on geometric intersection graphs into three main

categories depending on whether a result is about (i) finding character-

isation of a class of geometric intersection graph or (ii) proving bound

on a parameter or (iii) determining the computational complexity of an

algorithmic problem on geometric intersection graphs.

1.1 Characterisation of geometric intersection

graphs

A characterisation of a graph class G is a set of properties PG such that

a graph G ∈ G if and only if G satisfies all properties in PG. The prob-

lem of characterising interval graphs was first posed independently by

Hajos [96] in combinatorics and by Benzer [17] in genetics. Boland and

Lekkerkerker [26] gave the first characterisation of interval graphs.

A graph G has vertex set V (G) and edge set E(G). A graph G is a

chordal graph if it has no induced cycle of length greater than 3. Given

a vertex v ∈ V (G), we say that a path P misses v, if no vertex in P

is a neighbour of v. Three vertices a, b, c ∈ V (G) are said to form an

asteroidal triple, or AT for short, in G if there exists a path between

any two vertices in {a, b, c} that misses the third. A graph is said to be

AT-free if it contains no asteroidal triple.

Theorem 1.1.1 ([26]). A graph G is an interval graph if and only if G

is chordal and AT-free.

Theorem 1.1.1 is a forbidden structure characterisation of interval

3



(a) (b) (c)

(d) (e) (f)

Figure 1.1.1: All Minimal forbidden induced subgraphs of interval
graphs.

graphs. Boland and Lekkerkerker [26] found the graph classes shown

in Figure 1.1.1. They proved that any chordal graph containing an as-

teroidal triple must also contain one of the graphs from the graph classes

shown in Figure 1.1.1(a)-(e), as induced subgraphs.

Theorem 1.1.2 ([26]). A graph G is an interval graph if and only if G

does not contain any graph from the graph classes shown in Figure 1.1.1

as induced subgraphs.

A forbidden induced subgraph characterisation of a graph class G is a

set of graphs FG such that a graph G ∈ G if and only if G does not con-

tain any graph of FG as an induced subgraph. Theorem 1.1.2 is the first

instance of a forbidden induced subgraph characterisation and the sec-

ond instance of a forbidden structure characterisation (after Kuratowski’s

Theorem [151]) of a non-trivial graph class. Theorem 1.1.2 motivated the

researchers to prove analogous theorems for other graph classes [91, 145].

However, finding forbidden structure characterisations of graph classes

can be challenging tasks. Two classic examples are circular-arc graphs

and probe interval graphs.

Circular-arc graphs are the intersection graphs of circular arcs of

a circle. The first characterisation of circular-arc graphs appeared

in 1970 [149] and finding a forbidden induced subgraph characteri-

sation of circular-arc graphs is a challenging open problem. Many

4



partial results toward this goal have been proposed over the years,

but a full answer remains elusive, capturing the interest of many re-

searchers [27, 78, 111, 120, 148, 149]. In 2014, Francis et al. [81] gave a

forbidden structure characterisation of circular-arc graphs.

A graph G is a probe interval graph if there is a partition of V (G) into

sets P and N and a collection {Iv : v ∈ V (G)} of intervals of R such that,

for u, v ∈ V (G), uv ∈ E(G) if and only if Iu ∩ Iv 6= ∅ and at least one of

u, v belongs to P . Interval probe graphs were introduced by Zang [154]

to model certain problems in physical mapping of DNA when only partial

data is available on the overlap of clones (i.e., the intervals) [155, 156].

There are some characterisations of probe interval graphs [87, 126] but

forbidden structure characterisations are known for some subclasses of

probe interval graphs [31–33, 135].

Probe interval graphs are subclasses of intersection graphs of axis-

parallel rectangles on the plane i.e., rectangle intersection graphs. Specif-

ically, the following is an interesting observation. A graph G is a probe

interval graph if and only if there is a partition V (G) into sets P and N

such that (i) there is a set R = {rv : v ∈ P} of rectangles each of whose

bottom boundary lies on the x-axis, (ii) there is a set S = {sv : v ∈ N}
of disjoint horizontal segments each of them lying above x-axis, and (iii)

G is an intersection graph of R∪ S.

The earliest reference to the study of rectangle intersection graphs can

be traced back to the work of Bielecki [23]. However, very little is known

about the structure of rectangle intersection graphs. Graph classes like

outerplanar graphs, planar bipartite graphs, halin graphs, block graphs,

AT-free graphs with girth at least 5 are all subclasses of rectangle inter-

section graphs [22, 49, 97, 140]. On the other hand, there are examples

of series-parallel graphs, AT-free, split graphs that are not rectangle in-

tersection graphs [22, 25, 62]. This motivates the following question.

Question 1.1.1. Is there a forbidden structure characterisation for rect-

angle intersection graphs?

5



Structural properties of other generalisations of interval graphs like

intersection graphs of disks (disk graphs) and line segments (segment

graphs) on the plane have been widely studied in the literature [11, 30, 36–

38, 45, 53, 103, 123, 124]. Circle Packing Theorem implies that planar

graphs are disk graphs. Scheinerman [140] conjectured that all planar

graphs are segment graphs. Chalopin and Gonçalves [45] settled the

above conjecture.

Theorem 1.1.3 ([45]). Every planar graph is a segment graph.

West [150] conjectured that every planar graph is the intersection graph

of line segments using only four directions. Recently, Gonçalves [93]

proved that all planar graphs with chromatic number [151] at most three

are intersection graphs of line segments using only three directions. Since

disk graphs and segment graphs are string graphs, one might consider

characterising string graphs. Very little is known in this case. This

motivates the following question(s).

Question 1.1.2. Is there a forbidden structure characterisation of seg-

ment graphs or string graphs?

Researchers have studied many subclasses of segment graphs and string

graphs. Let G denote a class of geometric intersection graphs, and O be

another set of geometric objects. A subclass H ⊆ G captures a local

structure of G with respect to O if every graph H ∈ H has an intersection

representation R such that each object in R interacts with the objects of

O according to some specified notion. The set O is a localizer of G. Below

we give two examples that capture local structures of less understood

classes of geometric intersection graphs.

Permutation graph: A permutation graph is a graph whose vertices

represent the elements of a permutation, and whose edges represent pairs

of elements that are reversed by the permutation. Observe that, a graph

is a permutation graph if and only if it is an intersection graph of segments
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whose endpoints lie on two parallel lines. Permutation graphs capture a

local structure of segment graphs when the localizer is a pair of parallel

lines.

Co-comparability graph: A graph G is a comparability graph if edges

of G admit an transitive orientation [91]. A graph G is a co-comparability

graph if G is a comparability graph. In 1983, Golumbic et al. [90] proved

that a co-comparability graph on n vertices are intersection graphs of

n continuous curves set fi : [0, 1] → R(1 ≤ i ≤ n). Co-comparability

graphs capture a local structure of string graphs when the localizer is

a pair of parallel lines. Interestingly, Fox and Pach [80] proved that

every “dense” string graph contains a “dense” spanning subgraph that is

a co-comparability graph. Eventually, the above observation proves the

following extremal property of string graphs.

Theorem 1.1.4 ([80]). For every ε > 0, there exists δ > 0 such that

every string graph with n vertices and at least εn2 edges contains a bi-

clique with parts of size δn
logn

.

Characterisations of co-comparability graphs and permutation

graphs [58, 91, 116, 145] motivated us to study graph classes that cap-

ture local structures of rectangle intersection graphs. See Section 1.4 for

details.

1.2 Bounds on various parameters of geometric

intersection graphs

Researchers have used the rich structural properties and characterisations

of geometric intersection graphs to prove bounds on various graph param-

eters. A well-studied parameter is the chromatic number of geometric in-

tersection graphs. Even before the formal introduction of interval graphs,

Bielecki [23] and Rado [136] proved that the maximum number of pair-

wise intersecting intervals is equal to the minimum number of classes in
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a partition into subclasses containing pairwise disjoint intervals. This

implies the following theorem.

Theorem 1.2.1 ([23, 136]). The chromatic number an interval graph

equals its clique number.

Observe that every induced subgraph of an interval graph is an interval

graph. Therefore the above theorem implies that the chromatic number

of every induced subgraph of an interval graph equals its clique number.

This means that interval graphs are perfect graphs [91]. A graph G is

a perfect graph if the chromatic number of every induced subgraph of

G equals its clique number. Graph classes like probe interval graphs

and co-comparability graphs, are perfect graphs. The Strong Perfect

Graph Theorem [55] states that a graph G is a perfect graph if and only

if neither G nor G contain an induced odd cycle. Therefore rectangle

intersection graphs are not perfect graphs (since the cycle of order 5 is a

rectangle intersection graph). This raises the natural question: Can the

chromatic number of rectangle intersection graphs be bounded in terms

of the clique number? Asplund and Grünbaum [10] gave an answer to

the above question.

Theorem 1.2.2 ([10]). The chromatic number of a rectangle intersection

graph with clique number ω is at most 8ω2.

Asplund and Grünbaum [10] posed the following question.

Question 1.2.1. Is there an absolute constant c such that chromatic

number of any rectangle intersection graph G is at most c times the clique

number of G.

The above question has remained open for about 60 years. How-

ever, for some subclasses of rectangle intersection graphs, researchers

have answered the above question in affirmative [43, 114]. Asplund and

8



Grünbaum [10] asked if the chromatic number of triangle-free intersec-

tion graphs of 3-dimensional rectangles is bounded by a constant. Burl-

ing [34] answered the above question in negative. The chromatic num-

ber of other geometric intersection graphs have been studied extensively.

See [114, 142] for a detailed survey on the topic.

Chandran et al. [47] proved that if the boxicity of a graph G with n

vertices is equal to n
2
− s, s ≥ 0, then the chromatic number of G is

at least n
2s+2

. It is natural to ask if the converse is true. Formally, is

it true that for all graphs G, the boxicity of G, denoted by box(G), is

upper bounded by some function of the chromatic number of G? The

answer to the above question is negative. Adiga et al. [6] proved that for

any positive constant c < 1, almost all balanced bipartite graphs on 2n

vertices and m ≤ cn2 edges have boxicity Ω(m/n). Hence, the difference

between the chromatic number and boxicity of a graph can be arbitrarily

high. Chandran et al. [48] proved that for any graph G, box(G) is at most

the chromatic number of G2 where G2 is the graph obtained from G by

adding edges between vertices having some common neighbours in G.

For special classes of graphs, it might be possible to bound the box-

icity in terms of its chromatic number. Bhowmick and Chandran [22]

proved that the boxicity of an AT-free graph is at most its chro-

matic number. Chandran et al. [51] proved that for a line graph G,

box(G) = O(χ(G) log log(χ(G)), where χ(G) denotes the chromatic num-

ber of G. Their proof depends on the fact that for a line graph G,

box(G) = 2∆(G)(dlog log ∆(G)e + 3) + 1 where ∆(G) denotes the max-

imum degree of G. This raises the natural question of bounding the

boxicity of a graph in terms of its maximum degree. Adiga et al. [5]

proved the following theorem.

Theorem 1.2.3 ([5]). For any graph G having maximum degree ∆, there

exists a constant c′ such that box(G) < c′∆(log ∆)2. Moreover, there

exists a graph G with maximum degree ∆ and box(G) = Ω(∆ log ∆).

9



The above theorem was improved by Scott and Wood [143] who

proved that, for every graph G with maximum degree ∆, as ∆ → ∞,

box(G) ≤ 6(180 + o(1))∆ log(∆)(2e)
√

log log ∆ log log ∆. Boxicity of special

graph classes like chordal graphs, circular-arc graphs, AT-free graphs and

co-comparability graphs are bounded by linear functions of the maximum

degree. Chandran and Sivadasan [52] proved the above results by relating

boxicity and treewidth.

Theorem 1.2.4 ([52]). For a graph G, box(G) ≤ tw(G)+2, where tw(G)

is the treewidth of G.

Researchers have also studied the relationships between boxicity and

other graph parameters. See [48, 50, 52, 74–76, 143] for more results.

1.3 Computational complexity of algorithmic

problems on geometric intersection graphs

Researchers have studied the computational complexities of many algo-

rithmic problems on geometric intersection graphs. We classify the lit-

erature into two sections viz. (i) recognition algorithms for geometric

intersection graphs and (ii) algorithms for optimisation problems on ge-

ometric intersection graphs.

1.3.1 Recognition algorithms for geometric intersection

graphs

For a graph class G, the recognition problem for G is to decide whether

some given input graph belongs to G and any algorithm to solve a recogni-

tion problem is a recognition algorithm. Theorem 1.1.1 provides a O(n4)

time algorithm to recognise interval graphs with n vertices. Booth and

Lueker [28] proved the following.

Theorem 1.3.1 ([28]). There is an O(n+m) time algorithm to recognise

an interval graph with n vertices and m edges.

10



Since the result of Booth and Lueker [28], researchers have pro-

posed different recognition algorithms for interval graphs. Korte and

Möhring [113] proposed a simpler incremental algorithm to recognise in-

terval graphs. Hsu [101] gave a recognition algorithm for interval graphs

that directly placed the intervals without precomputing all maximal

cliques. Habib et al. [95] gave a Lex-BFS based linear time algorithm

to recognise interval graphs. Corneil et al. [59] gave a 4-sweep Lex-BFS

based algorithm to recognise interval graphs.

When the input graph is an interval graph, all the algorithms discussed

so far produce an interval representation. However, if the input graph is

not an interval graph, then these algorithms do not output any structure

which is forbidden for interval graphs. In other words, the algorithms are

not certifying in nature.

A certifying algorithm for a decision problem is an algorithm that pro-

vides a certificate with each answer that it produces [122]. A certifying

recognition algorithm for a class G of geometric intersection graphs must

produce either a valid intersection representation of the input graph G

that acts as the evidence that G ∈ G or output some structures that are

known to be absent in any graph that belongs to G. Finding a forbidden

structure characterisation of a graph class G is important for designing

a certifying recognition algorithm for G. Kratsch et al. [116] used The-

orem 1.1.1 to give the first certifying recognition algorithm for interval

graphs.

Researchers have studied the computational complexities of recognition

problems for many generalisations of interval graphs. A particular case

of interest is the class of rectangle intersection graphs. Yannakakis [153]

questioned the existence of polynomial-time recognition algorithms for

rectangle intersection graphs and Kratochv́ıl [115] proved the following

theorem.

Theorem 1.3.2 ([115]). Recognising rectangle intersection graphs is NP-

Complete.
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There is a recognition algorithm for rectangle intersection graphs based

on the following principle. For any rectangle intersection graph G there

exist two interval graphs I1 and I2, both having the same vertex set and

any edge of G is an edge in both I1 and I2. Since there are only O(2n logn)

interval graphs having n vertices, we can decide if G is a rectangle in-

tersection graph or not, in Õ(4n) time. The above algorithm produces

a rectangle intersection representation of the input graph if it exists. If

the input graph is not a rectangle intersection graph, then the algorithm

does not provide a certificate. This motivates the following question.

Question 1.3.1. Is there a certifying recognition algorithm for rectangle

intersection graphs?

To answer Question 1.3.1, we need a forbidden structure characterisa-

tion of rectangle intersection graphs.

Researchers have studied the computational complexities of recognition

problems for many subclasses of rectangle intersection graphs. A partic-

ular case of interest is the class of intersection graphs of axis-parallel unit

squares on the plane, i.e., unit square intersection graphs. Recognising

unit square intersection graphs is an NP-complete problem [30]. Since all

rectangle intersection graphs are not unit square intersection graphs (e.g.

K1,5), it makes sense to study the computational complexity of recog-

nising unit square intersection graphs when the inputs are restricted to

rectangle intersection graphs. Since all trees are rectangle intersection

graphs, the following question is interesting.

Question 1.3.2. Is there a polynomial-time algorithm to recognise trees

that are also unit square intersection graphs?

In this thesis, we study the computational complexities of the recogni-

tion problems for graph classes that capture local structures of rectangle

intersection graphs and unit square intersection graphs. See Section 1.4

for details.
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1.3.2 Algorithms for optimisation problems on geometric

intersection graphs

Suppose there is a resource, and there are some requests to use the re-

source for specific time intervals. Assuming that the resource can serve

only one request at a time, the job of a scheduler is to choose the maxi-

mum number of such requests that can be served by the resource. Solv-

ing the above problem is equivalent to solving the Maximum Indepen-

dent Set [84] problem on interval graphs. The above example is one

of many real-world applications that motivate the study of computa-

tional complexities of optimisation problems on geometric intersection

graphs [2, 8, 41, 43, 46, 66, 86, 104, 108].

An independent set of an undirected graph G is a set of pairwise non-

adjacent vertices. The independence number of a graph G is the maxi-

mum integer k such that G has an independent set with cardinality k.

The Maximum Independent Set (MIS) problem is to find an inde-

pendent set of an input graph with maximum cardinality. There are

several polynomial-time algorithms to solve the MIS problem on interval

graphs [21, 144, 147]. On the other hand, the MIS problem is NP-

complete for rectangle intersection graphs [102]. Therefore researchers

have focused on designing approximation algorithms for the MIS prob-

lem on rectangle intersection graphs.

An α-approximation algorithm for an optimisation problem Π is a

polynomial-time algorithm that for all instances of the problem produces

a solution whose value is within a factor of α of the value of an opti-

mal solution for that instance. If ALG(I) is the value of the solution

computed by an algorithm and OPT (I) is the value of the optimal so-

lution on input instance I ∈ Π then, OPT (I) ≤ ALG(I) ≤ α · OPT (I)

(for minimization problems) or OPT (I) ≥ ALG(I) ≥ α · OPT (I) (for

maximization problems) for every instance I.

The MIS problem turns out to be significantly harder in case of rectan-
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gle intersection graphs. No constant factor approximation algorithms is

known for the MIS problem on rectangle intersection graphs. The best-

known hardness result is on strong NP-hardness [102]. Chalmersook and

Chuzhoy [44] gave an O(log log n)-approximation algorithm for the MIS

problem on rectangle intersection graphs. Lewin-Eytan et al. [119] gave a

4q-approximation algorithm for the MIS problem on rectangle intersec-

tion graphs having clique number q. When the optimal independent set of

a rectangle intersection graph with n vertices has size βn for some β ≤ 1,

Agarwal and Mustafa [7] gave an algorithm that computes an indepen-

dent set of size β2n. Adamaszek et al. [3] gave an (1− ε)-approximation

algorithm for the MIS problem on intersection graphs of n polygons on

the plane with a quasi-polynomial running time of O(2poly(logn, 1
ε
) ·n log n).

Adamaszek et al. [3] also gave a polynomial-time approximation scheme

(PTAS) for the MIS problem on intersection graphs of δ-large rectangles

for any δ > 0, i.e., for the case when each rectangle has at least one side

of length at least δN , assuming that in the input only integer coordinates

within {0, . . . , N} occur. But the following question remains open.

Question 1.3.3. Is there a polynomial-time constant-factor approxima-

tion algorithm for the MIS problem on rectangle intersection graphs?

A closely related minimisation problem is the Minimum Vertex

Cover (MVC) problem. A vertex cover of an undirected graph G is a

subset D of vertices such that each edge of G has at least one endpoint in

D. The vertex cover number of a graph G is the minimum integer k such

that G has a vertex cover with cardinality k. The Minimum Vertex

Cover (MVC) problem is to find a vertex cover of an input graph with

minimum cardinality. Observe that, the number of vertices of a graph

is equal to its vertex cover number plus its independence number. The

observation implies a polynomial-time algorithm for the MVC problem

on interval graphs and NP-hardness for the MVC problem on rectangle

intersection graphs, respectively.
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There is a polynomial-time 2-approximation algorithm for the MVC

problem on general graphs. Bar-Yehuda et al. [16] gave an efficient

polynomial-time approximation scheme (EPTAS) for the MVC problem

on intersection graphs of non-crossing rectangles, i.e., the case where

R1\R2 is connected for every pair of input rectangles R1, R2. Bar-Yehuda

et al. [16] also gave an (1.5 + ε)-approximation algorithm for the MVC

problem on rectangle intersection graphs. But the following question

remains open.

Question 1.3.4. Is there a PTAS for the MVC problem on rectangle

intersection graphs?

Observe that a vertex cover of a graphG contains at least one neighbour

of each vertex of G. In other words, a vertex cover of a graph G is also a

dominating set of G. Formally, a dominating set of an undirected graph

G is a subset D of vertices such that each vertex in V (G) \D is adjacent

to some vertex in D. The Minimum Dominating Set (MDS) problem

is to find a dominating set of an input graph with minimum cardinality.

Since the formal introduction of dominating set [19, 130], more than 500

research papers have been written on the topic. For a survey see [98–100].

Due to the NP-complete nature of the MDS problem [84], researchers

have focused on designing approximation algorithms for the MDS prob-

lem. Unless P = NP , for any ε > 0, there is no polynomial-time o(log n)-

approximation algorithm for the MDS on general graphs [69]. Therefore,

researchers have focused on studying the complexity of the MDS prob-

lem on geometric intersection graphs. Intersection graphs of disks with

unit radius i.e. unit disk graphs have attracted a significant amount of

research in this direction. In 1995, Marathe et al. [121] gave the first

constant factor approximation algorithm for the MDS problem on unit

disk graphs. Nieberg and Hurink [129] proposed a PTAS for the MDS

problem on unit disk graphs. Carmi et al. [39] proposed several approxi-

mation algorithms for the MDS problem on unit disk graphs. Gibson and

15



Pirwani [88] used the local search technique introduced by Mustafa and

Ray [128] to give a PTAS for the MDS problem on disk graphs. The same

technique was later generalised to obtain PTAS for the MDS problem on

intersection graphs of non-piercing 2D objects and intersection graphs of

homothets of convex objects [67, 94]. The complexity of the MDS prob-

lem on rectangle intersection graphs is less understood. Erlebach and

Van Leeuwen [73] proved that MDS problem is APX-hard [152] on rect-

angle intersection graphs and proposed an O(1)-approximation algorithm

for the MDS problem on intersection graphs of rectangles with bounded

aspect ratio. The following remains a challenging open problem.

Question 1.3.5. Is there a constant-factor approximation algorithm for

the MDS problem on rectangle intersection graphs?

Pandit [132] introduced the intersection graphs of diagonally anchored

rectangles. A set R of rectangles is a set of diagonally anchored rectan-

gles if there is a straight line l with slope −1 such that intersection of

any R ∈ R with l is exactly one corner of R. The MDS problem remains

NP-Hard on intersection graphs of diagonally anchored rectangles [132].

Bandyapadhyay et al. [13] gave a (2+ ε)-approximation algorithm for the

same using the local search technique of Mustafa and Ray [128]. Inter-

section graphs of diagonally anchored rectangles is a subclass of rectangle

overlap graphs. A rectangle overlap representation R of a graph G is a set

of rectangles {Ru}u∈V (G) such that uv ∈ E(G) if and only if the bound-

aries of Ru and Rv intersect. A graph G is a rectangle overlap graph if

G has a rectangle overlap representation. Fulkerson and Gross [82] in-

troduced a more general notion of overlap graphs of a collection of sets.

Rim and Nakajima [137] formally initiated the study of rectangle overlap

graphs, but few results are known [117, 137]. We focus on the following

question.

Question 1.3.6. Is there a constant-factor approximation algorithm for

the MDS problem on rectangle overlap graphs?
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As the rectangle overlap graphs and the rectangle intersection graphs

are subclasses of string graphs, one might hope to propose a constant-

factor approximation algorithm for the MDS problem on string graphs.

However, the existence of such an algorithm is unlikely. It is known that

all chordal graphs are string graphs and solving the MDS problem on

chordal graphs are asymptotically equivalent to solving the MDS problem

on general graphs. Therefore, unless P = NP , there is no polynomial-

time o(log n)-approximation algorithm for the MDS problem on string

graphs.

Asinowski et al. [9] introduced the concept of Bk-VPG graphs and

bend number. A path is a simple rectilinear curve and a k-bend path

is a path having k bends. The Bk-VPG graphs are intersection graphs

of k-bend paths. A graph G is a VPG graph if G is a Bk-VPG graph

for some k. The bend number of a graph G, denoted by bend(G), is the

minimum integer k for which G has an intersection representation of k-

bend paths. Asinowski et al. [9] proved that VPG graphs are equivalent to

string graphs. Chaplick et al. [54] proved that for every k ≥ 0, Bk-VPG (
Bk+1-VPG. Therefore, it makes sense to investigate the complexity of the

MDS problem on Bk-VPG graphs, for a fixed k ≥ 0. Katz et al. [107]

have already studied the MDS problem on B0-VPG graph under the

name of orthogonal segment domination problem. Their result implies

that it is NP-Hard to solve the MDS problem on Bk-VPG graphs with

k ≥ 0. However, the following question is open.

Question 1.3.7. Is there an f(k)-approximation algorithm for the MDS

problem on Bk-VPG graphs for any k ≥ 0.

An affirmative answer to the Question 1.3.7 would give an affirmative

answer to Question 1.3.6.

The MDS problem remains difficult in subclasses of B1-VPG graphs.

An L-path is a 1-bend path having the shape ‘L’. A set of L-paths is

vertically-stabbed if all L-paths in the set intersect a common vertical line.
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A graph G is a vertically-stabbed L-graph if G is an intersection graph

of vertically-stabbed L-paths. McGuinness [125] introduced the class

of vertically-stabbed L-graphs. It contains interval graphs, outerplanar

graphs, permutation graphs, circle graph as subclasses. Researchers have

studied the MDS problem on these classes of graphs ([29, 57, 64, 65, 77]).

Bandyapadhyay et al. [13] proved that the MDS problem is APX-hard

on vertically-stabbed L-graphs. An algorithm of Mehrabi [127] implies

an O(1)-approximation algorithm for the MDS problem on vertically-

stabbed L-graphs. This motivates the following question.

Question 1.3.8. What is the optimal approximation ratio for the MDS

problem on vertically-stabbed L-graphs?

In this thesis, we shall address Questions 1.3.6-1.3.8.

1.4 Contributions and thesis overview

We now present a summary of the results presented in the thesis.

1.4.1 Stab number of rectangle intersection graphs

In Chapter 2, we introduce the following graph classes. A graph G is

said to be a k-stabbable rectangle intersection graph, or k-SRIG, if it has

a rectangle intersection representation in which k horizontal lines can be

chosen such that each rectangle is intersected by at least one of them. If

there exists such a representation with the additional property that each

rectangle intersects exactly one of the k horizontal lines, then the graph

G is said to be a k-exactly stabbable rectangle intersection graph, or k-

ESRIG. The stab number, stab(G), of a graph G is the minimum integer

k such that G is a k-SRIG. Similarly, the exact stab number, estab(G), of

a graph G, is the minimum integer k such that G is a k-ESRIG. Observe

that the class 2-SRIG captures a local structure of rectangle intersection

graphs when the localizer is a pair of horizontal lines.
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We provide tight upper bounds on the exact stab number of several

classes of rectangle intersection graphs. We show that for k ≤ 3, k-

SRIG is equivalent to k-ESRIG. We introduce a natural generalisation of

asteroidal triples and show that certain structures are forbidden in rect-

angle intersection graphs. We believe this to be a positive step towards

answering Question 1.1.1. We show that these forbidden structures are

sufficient to characterise block graphs that are 2-ESRIG and trees that

are 3-ESRIG. Our observations lead to polynomial-time recognition al-

gorithms for these two classes of graphs. We show that these forbidden

structures are not sufficient to characterise block graphs that are 3-SRIG

or trees that are k-SRIG for any k ≥ 4. We also show that for any k ≥ 10,

there is a tree that is a k-SRIG but not a k-ESRIG.

1.4.2 Rectangle intersection graphs of stab number at

most 2

In Chapter 3, we introduce some natural subclasses of 2-SRIG and study

the containment relationships among them. We show that one of these

subclasses can be recognised in linear-time if the input graphs are re-

stricted to be triangle-free. We also show that the Chromatic Number

problem is NP-complete for 2-SRIGs.

1.4.3 Recognising trees that are 2-SUIG

A graph G is a 2-stabbable unit square intersection graph or 2-SUIG, if G

is an intersection graph of axis-parallel unit squares on the plane with stab

number at most two. Observe that, 2-SUIG captures a local structure of

unit square intersection graphs when the localizer is a pair of horizontal

lines. In Chapter 4, we give a linear-time algorithm to recognise trees

that are 2-SUIG. This addresses Question 1.3.2.
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1.4.4 Dominating set of stabbed rectangle overlap graphs

In Chapter 5, we show that if the Unique Games Conjecture [110] is

true, it is not possible to have a polynomial-time (2 − ε)-approximation

algorithm for the MDS problem on rectangle overlap graphs. A set R
of rectangles is stabbed if there is a straight line that intersects all rect-

angles in R. A graph G is a stabbed rectangle overlap graph if G has

a stabbed rectangle overlap representation. Observe that, the class of

stabbed overlap graphs captures a local structure of rectangle overlap

graphs when the localizer is a straight line. We give a 768-approximation

algorithm on stabbed rectangle overlap graph. The above results address

Question 1.3.6.

1.4.5 Dominating set of vertically-stabbed L-graphs and

unit Bk-VPG graphs

In Chapter 6, we give an 8-factor approximation algorithm for the MDS

problems on vertically-stabbed L-graphs. This addresses Question 1.3.8.

For k ≥ 0, unit Bk-VPG graphs are intersection graphs of simple recti-

linear curves on the plane such that each curve in the set has at most k

bends, and each segment of each of the curves have unit length. We show

that the MDS problem on unit B0-VPG graphs is NP-hard, strength-

ening a result of Katz et al. [107]. We propose an O(k4)-approximation

algorithm for the MDS problem on unit Bk-VPG graphs. This solves a

special case of Question 1.3.7.

1.4.6 Conclusion

Finally, in Chapter 7, we discuss some open problems and possible direc-

tions for future research to conclude the thesis.
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We study the structure of rectangle intersection graphs by introducing

the notion of stab number and exact stab number of rectangle intersection

graphs. Below we recall some definitions from Chapter 1 and introduce

some new definitions also.

A rectangle intersection representation of a graph is a collection of axis-

parallel rectangles on the plane such that each rectangle in the collection

represents a vertex of the graph and two rectangles intersect if and only

if the vertices they represent are adjacent in the graph. The graphs that

have rectangle intersection representation are called rectangle intersection

graphs. A k-stabbed rectangle intersection representation is a rectangle

intersection representation, along with a collection of k horizontal lines

called stab lines, such that every rectangle intersects at least one of the

stab lines. A graph G is a k-stabbable rectangle intersection graph (k-

SRIG), if there exists a k-stabbed rectangle intersection representation

of G. The stab number of a rectangle intersection graph, denoted by

stab(G), is the minimum integer k such that there exists a k-stabbed

rectangle intersection representation of G. In other words stab(G) is the

minimum integer k such that G is k-SRIG.

A k-exactly stabbed rectangle intersection representation is a k-stabbed

rectangle intersection representation in which every rectangle intersects

exactly one of the stab lines. A graph G is a k-exactly stabbable rectan-
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gle intersection graph, or k-ESRIG for short, if there exists a k-exactly

stabbed rectangle intersection representation ofG. The exact stab number

of a rectangle intersection graph, denoted by estab(G), is the minimum

integer k such that there exists a k-exactly stabbed rectangle intersection

representation of G. In other words, estab(G) is the minimum integer k

such thatG is k-ESRIG. Note that for a graph G, stab(G) ≤ estab(G) and

that a graph G is an interval graph if and only if stab(G) = estab(G) = 1,

or in other words, the class of interval graphs, the class of 1-SRIGs, and

the class of 1-ESRIGs are all the same.

A unit height rectangle intersection graph G is a graph that has a

rectangle intersection representation in which all rectangles have equal

height.

For a subclass C of rectangle intersection graphs, stab(C, n) is the min-

imum integer k such that any graph G ∈ C with n vertices satisfies

stab(G) ≤ k, and estab(C, n) is the minimum integer k such that for any

graph G ∈ C with n vertices satisfies estab(G) ≤ k.

2.1 Chapter overview

In Section 2.2, we give some definitions and notation that will be used

throughout the chapter. We prove some basic results about k-SRIGs and

k-ESRIGs in Section 2.3. We first show a simple necessary and sufficient

condition for a graph to be a k-ESRIG and also show why the classes

k-SRIG and k-ESRIG are equivalent when k ≤ 3 (Theorem 2.3.2). Then

we prove that the class of unit height rectangle intersection graphs is

a proper subset of the class of graphs which have a k-exactly stabbed

rectangle intersection representation (Theorem 2.3.3), which is a proper

subset of rectangle intersection graphs (Theorem 2.3.4).

In Section 2.4, we show a lower bound on the stab number of rectangle

intersection graphs in terms of the clique number and the pathwidth,

and then study upper bounds on the stab number of rectangle intersection
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graphs that are also (a) split graphs, or (b) block graphs. In particular, we

show (a) that all rectangle intersection graphs that are also split graphs

have exact stab number at most 3 and that this bound is tight, and (b)

an upper bound of dlogme on the exact stab number of block graphs with

m blocks (this bound is shown to be asymptotically tight in Section 2.7).

Then in Section 2.5, we describe a forbidden structure for k-SRIG and

k-ESRIG, which we call “asteroidal-(non-(k − 1)-SRIG)” subgraphs and

“asteroidal-(non-(k−1)-ESRIG)” subgraphs respectively. These obstruc-

tions are a natural generalization of the well-known asteroidal-triples of

Lekkerkerker and Boland [26], which are obstructions for interval graphs.

In Section 2.5.2, we discuss some general properties possessed by the

block-trees of graphs without these kinds of obstructions. In Section 2.6,

we show that the absence of these forbidden structures is enough to char-

acterize block graphs that are 2-ESRIG (Theorem 2.6.1) and trees that

are 3-ESRIG (Theorem 2.6.2). These results lead to polynomial-time al-

gorithms to recognize block graphs that are 2-SRIG and trees that are

3-SRIG.

Then we explore the natural question of whether there exists a constant

c such that every tree is a c-SRIG. We give a negative answer to this

question in Section 2.7.

We use the machineries developed in Section 2.7 to show that the for-

bidden structure characterizations of Theorems 2.6.1 and 2.6.2 do not

extend to block graphs that are 3-ESRIG (equivalently 3-SRIG, by The-

orem 2.3.2) or trees that are k-SRIG for any k ≥ 4. We prove the above

results in Section 2.8.

In Theorem 2.3.3, we proved that K4,4 is not an exactly stabbable rect-

angle intersection graph. This leads us to the natural question of finding

exactly stabbable graphs whose exact stab number is strictly greater than

the stab number. Using several lemmas proved in Section 2.7 and 2.8, we

show that for each k ≥ 10, there exist trees which are k-SRIG but not

k-ESRIG (Theorem 2.9.1). Therefore, even for graphs that are exactly
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stabbable, like trees (Theorem 2.4.4), the stab number and the exact stab

number may differ. We prove this result in Section 2.9. Finally, we draw

conclusions in Section 2.10.

2.2 Preliminaries

We present some definitions in this section. Let G be a graph with vertex

set V (G) and edge set E(G). Let N(v) = {u ∈ V (G) : uv ∈ E(G)}
and N [v] = N(v) ∪ {v} denote the open neighbourhood and the closed

neighbourhood of a vertex v, respectively. For S ⊆ V (G), we denote

by G[S] the subgraph induced in G by the vertices in S, and by G − S
the graph obtained by removing the vertices in S from G. For an edge

e ∈ E(G), we denote by G− e the graph on vertex set V (G) having edge

set E(G) \ {e}.
Let G be a rectangle intersection graph with rectangle intersection rep-

resentation R. A rectangle in R corresponding to the vertex v is denoted

as rv. All rectangles considered in this article are closed rectangles. De-

note by x+
v (x−v ), the x−coordinate of the right (left) bottom corner of rv.

Also y+
v (y−v ) is the y−coordinate of the left top (bottom) corner of rv. In

other words, rv = [x−v , x
+
v ]× [y−v , y

+
v ]. The span of a vertex u, denoted as

span(u), is the projection of ru on the X−axis, i.e. span(u) = [x−u , x
+
u ].

For two intervals I1 = [a1, b1] and I2 = [a2, b2], we write I1 < I2 to indi-

cate that b1 < a2. Clearly, I1 ∩ I2 = ∅ if and only if I1 < I2 or I2 < I1.

For an edge uv ∈ E(G), we define span(uv) = span(u) ∩ span(v).

Let G be a k-SRIG with a k-stabbed rectangle intersection represen-

tation R in which the stab lines are y = a1, y = a2, . . ., y = ak, where

a1 < a2 < · · · < ak. The top (resp. bottom) stab line of R is the stab

line y = ak (resp. y = a1). For 1 ≤ i < k, we say that y = ai+1 is the

stab line “just above” the stab line y = ai and that y = ai is the stab

line “just below” the stab line y = ai+1. We also say that the stab lines

y = ai and y = ai+1 are “consecutive”. A vertex u ∈ V (G) is said to
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be “on” a stab line if ru intersects that stab line. Two vertices u, v of

G “have a common stab” if there is some stab line that intersects both

ru and rv. Similarly, a set of vertices is said to have a common stab if

there is one stab line that intersects the rectangles corresponding to each

of them. It is easy to see that if uv ∈ E(G), then there must be either a

stab line such that u and v are on it or two consecutive stab lines such

that u is on one of them and v is on the other. Whenever the k-stabbed

rectangle intersection representation of a graph G under consideration is

clear from the context, the terms ru, x
−
u , x+

u , y−u , y+
u , for every vertex

u ∈ V (G) and usages such as “on a stab line”, “have a common stab”,

“span” etc. are considered to be defined with respect to this represen-

tation. Clearly, both the classes k-SRIG and k-ESRIG are closed under

taking induced subgraphs. We say that a graph is a non-k-SRIG (resp.

non-k-ESRIG) if it is not a k-SRIG (resp. k-ESRIG). Similarly, we say

that a graph is a non-interval graph if it is not an interval graph.

2.3 Basic results

Given a collection I of intervals, a hitting set X of I is a subset of R
such that each interval in I contains at least one element of X. The set

X is an exact hitting set of I if each interval in I contains exactly one

element of X. An interval graph G is said to have an exact hitting set of

size k if there exists an interval representation I of G that has an exact

hitting set of cardinality k. Note that some collections of intervals may

not have an exact hitting set of any cardinality. Also, there are interval

graphs (for example, K1,4) that have no exact hitting set.

Theorem 2.3.1. A graph G is a k-ESRIG if and only if there exists

two interval graphs I1 and I2 such that V (G) = V (I1) = V (I2) and

E(G) = E(I1) ∩ E(I2) and at least one of I1, I2 has an exact hitting set

of size k.
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Proof. First we prove that if G has a k-exactly stabbed rectangle in-

tersection representation, then there exist two interval graphs I1 and

I2 such that V (G) = V (I1) = V (I2) and E(G) = E(I1) ∩ E(I2)

and at least one of them has an exact hitting set of size k. Let R
be a k-exactly stabbed rectangle intersection representation of G and

{y = a1, y = a2, . . . , y = ak} be the set of stab lines in R. Let Ix, Iy be

the interval graphs formed by taking the projections of the rectangles in

R on the X and Y axes, respectively. In other words, Ix is the interval

graph given by the interval representation {[x−u , x+
u ]}u∈V (G) and Iy is the

interval graph given by the interval representation {[y−u , y+
u ]}u∈V (G). It is

clear that V (G) = V (Ix) = V (Iy) and E(G) = E(Ix) ∩ E(Iy). Further-

more, the set S = {a1, a2, . . . , ak} is an exact hitting set of the interval

representation {[y−u , y+
u ]}u∈V (G) of Iy. Hence, Iy has an exact hitting set

of size k.

Now assume that there exist two interval graphs I1 and I2 such that

V (G) = V (I1) = V (I2) and E(G) = E(I1) ∩ E(I2) and at least one of

them, say I1, has an exact hitting set of size k. Let S = {a1, a2, . . . , ak}
be an exact hitting set of an interval representation {[cu, du]}u∈V (G) of

I1. Also, let {[c′u, d′u]}u∈V (G) be an interval representation of I2. For

each u ∈ V (G), define ru = [c′u, d
′
u] × [cu, du]. It is easy to see that

R = {ru}u∈V (G) is a rectangle intersection representation of G. Further,

the lines y = a1, y = a2, . . ., y = ak are horizontal lines such that each

rectangle in R intersects exactly one of them. Hence, R, together with

these lines, is a k-exactly stabbed rectangle intersection representation of

G and therefore, G is a k-ESRIG. This completes the proof.

Theorem 2.3.2. When k ≤ 3, the classes k-SRIG and k-ESRIG are

equivalent.

Proof. If a graph G is k-ESRIG for some k, then G is also k-SRIG.

Therefore it suffices to prove that if a graph G has a k-stabbed rectangle

intersection representation for some k ≤ 3, then G also has a k-exactly
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stabbed rectangle intersection representation. If k = 1, then there is

nothing to prove. So we shall assume that k ∈ {2, 3}. Let R be a k-

stabbed rectangle intersection representation of a graph G with k ≤ 3

with stab lines y = 0, y = 1, . . ., y = k − 1. We can assume with-

out loss of generality that for any two distinct vertices u, v ∈ V (G),

we have {y+
u , y

−
u } ∩ {y+

v , y
−
v } = ∅ and that for any vertex v ∈ V (G),

we have {y+
v , y

−
v } ∩ {0, 1, 2} = ∅ (note that if this is not the case,

then the rectangles in R can be perturbed slightly so that these con-

ditions are satisfied). Let S = {y+
v , y

−
v }v∈V (G) ∪ {0, 1, 2} and ε be a

positive real number such that ε < min{|a − b| : a, b ∈ S, a 6= b}. Let

M = {u ∈ V (G) : ru intersects the stab line y = 1}. For each vertex

u ∈ M , define r′u = [x−u , x
+
u ] × [y′−u , y

′+
u ], where y′−u = max{ε, y−u } and

y′+u = min{2− ε, y+
u }. Let R′ be the rectangle intersection representation

given by the collection of rectangles (R\{ru : u ∈M})∪{r′u : u ∈M}. It

is now easy to verify that R′ is a k-exactly stabbed rectangle intersection

representation of G. Indeed, R′ is obtained from R by the vertical short-

ening of some of the rectangles intersecting the stab line y = 1, and we

only need to show that every rectangle that is so shortened still intersects

with all the rectangles with which it originally has an intersection. The

definition of ε guarantees that in R, the bottom edge of any rectangle is

no higher than 2 − ε and the top edge of any rectangle is no lower than

ε. So when a rectangle is shortened in the manner described above, it

does not become disjoint from a rectangle with which it previously had

a nonempty intersection. Therefore R is a valid rectangle intersection

representation of G. It is clear that any rectangle that intersects the stab

line y = 1 in R intersects only the stab line y = 1 in R′. This implies that

R′ is a k-exactly stabbed rectangle intersection representation of G.

In the following theorem, we show that for k = 4, the classes k-SRIG

and k-ESRIG differ.
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(a) (b)

Figure 2.3.1: (a) A 4-stabbed rectangle intersection representation of
K4,4, (b) a 3-exactly stabbed rectangle intersection representation of
K3,3.

Theorem 2.3.3. There is a graph G such that stab(G) ≤ 4 and G is not

a k-ESRIG for any k.

Proof. We let G = K4,4, i.e. the complete bipartite graph in which

each partite set contains four vertices each. Clearly, G is a rectangle

intersection graph with stab(G) ≤ 4 (see Figure 2.3.1(a)). We shall prove

that G is not an exactly stabbable rectangle intersection graph. First we

prove the following claim.

Claim. Let C be a cycle of length four and E(C) = {ab, bc, cd, da}.
There is no k-exactly stabbed rectangle intersection representation of C,

for any integer k, in which a, c have a common stab and b, d have a

common stab.

Assume for the sake of contradiction that there is a k-exactly stabbed

rectangle intersection representation R of C, for some integer k, in which

a, c have a common stab and b, d have a common stab. Clearly, a, b, c, d

cannot all be on one stab line (as C is not an interval graph). Since

every vertex is on exactly one stab line and because ab ∈ E(C), we can

assume without loss of generality that a, c are on the stab line just below

the stab line on which b, d are. Since a, c and b, d are nonadjacent in C,

again without loss of generality we can assume that span(a) < span(c).

Since b ∈ N(a) ∩ N(c), we can infer that [x+
a , x

−
c ] ⊂ span(b). Similarly,

we can show that [x+
a , x

−
c ] ⊂ span(d). But this implies that [x+

a , x
−
c ] ⊂
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span(b) ∩ span(d). Since b, d are on the same stab line, this means that

rb ∩ rd 6= ∅. As bd /∈ E(C), this contradicts the fact that R is a rectangle

intersection representation of C. This proves the claim.

Now suppose that G has a k-exactly stabbed rectangle intersection

representation R for some k. Let V1, V2 be the two partite sets of G

(recall that G is isomorphic to K4,4) and v ∈ V1 be a vertex on some

stab line `. Since each vertex is on exactly one stab line, and all vertices

of V2 are adjacent to v, we know that each vertex of V2 must be on the

stab line `, on the stab line just above `, or on the stab line just below

`. By Pigeon Hole Principle, there exists u,w ∈ V2 such that u and w

are both on one of these stab lines, say `1. Now, for the same reason as

before, each vertex of V1 must be on the stab line `1, on the stab line

just above `1, or on the stab line just below `1. Again by Pigeon Hole

Principle, there are two vertices u′, w′ ∈ V1 such that u′ and w′ are both

on one of these stab lines. Now, consider the cycle C of length four with

E(C) = {u′u, uw′, w′w,wu′}, that is an induced subgraph of G. It can be

seen that the rectangles in R corresponding to the vertices of C form a k-

exactly stabbed rectangle intersection representation of C in which u′, w′

have a common stab and u,w have a common stab. This contradicts

the claim proved above. Therefore, G cannot have a k-exactly stabbed

rectangle intersection representation for any k.

Corollary 1. The class of exactly stabbable rectangle intersection graphs

is a proper subset of the class of rectangle intersection graphs.

The above theorem shows that there are graphs whose stab number is a

constant but their exact stab number is infinite. Later on, in Section 2.9

(Theorem 2.9.1), we shall show that there are even trees whose stab

number and exact number differ.

Theorem 2.3.4. The class of unit height rectangle intersection graphs

is a proper subset of the class of exactly stabbable rectangle intersection

graphs.
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Proof. We shall first give a proof for the well-known fact that every unit

height rectangle intersection graph is an exactly stabbable rectangle in-

tersection graph. We shall prove the following stronger claim.

Claim. Given a unit height rectangle intersection representation R for a

graph G, there exists a set of horizontal lines y = a1, y = a2, . . ., y = ak

(for some integer k), where a1 < a2 < · · · < ak, such that each rectangle

in R intersects exactly one of them and a1 = minu∈V (G){y+
u }.

Let a = minu∈V (G){y+
u } and let S = {u : u ∈ V (G) and a ∈ [y−u , y

+
u ]}.

Now consider the unit height rectangle intersection representation R′ =

R \ {ru}u∈S of G′ = G − S. By the induction hypothesis, there ex-

ists a set of horizontal lines y = a′1, y = a′2, . . ., y = a′k′ , for some

integer k′, where a′1 < a′2 < · · · < a′k′ , such that each rectangle in R′
intersects exactly one of them and a′1 = minu∈V (G′){y+

u }. Since every

rectangle in R′ lies completely above the horizontal line y = a, we have

that minu∈V (G′){y+
u } > a + 1. Therefore, we have a′1 − a > 1. Since

a′1 < a′2 < · · · < a′k′ , this means that for 1 ≤ i ≤ k′, no rectangle of R
intersects both the horizontal lines y = a′i and y = a. Since every rectan-

gle in {ru}u∈S intersects the horizontal line y = a, and every rectangle in

{ru}u∈V (G′) intersects exactly one of the horizontal lines y = a′1, y = a′2,

. . ., y = a′k′ , it follows that each rectangle of R intersects exactly one of

the horizontal lines y = a, y = a′1, y = a′2, . . ., y = a′k′ . This proves the

claim.

We shall now show the existence of an exactly stabbable rectangle in-

tersection graph that is not a unit height rectangle intersection graph.

Consider the graph K3,3, i.e. the complete bipartite graph in which each

partite set contains three vertices each. Clearly, K3,3 is an exactly stab-

bable rectangle intersection graph (see Figure 2.3.1(b)). We shall prove

that K3,3 is not a unit height rectangle intersection graph.

A rectangle intersection representation R of a graph G is crossing-free

if for any two rectangles ru and rv in R, the regions ru \ rv and rv \ ru
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are both arc-connected. Note that a unit height rectangle intersection

representation of a graph is crossing-free. We shall show that if a triangle-

free graph G has a crossing-free rectangle intersection representation,

then G must be a planar graph. It then follows directly that K3,3 is not

a unit height rectangle intersection graph.

Let R be a crossing-free rectangle intersection representation of a

triangle-free graph G and let S ⊆ V (G) be the set of vertices of G having

degree one. Let H = G − S. Clearly, G is planar if and only if H is

planar. Let R′ be obtained from R by removing all the rectangles corre-

sponding to the vertices in S. Note that H is a triangle-free graph and

R′ is crossing-free.

Claim. There is no rectangle in R′ which is contained in some other

rectangle of R′.

Assume for the sake of contradiction that for vertices u, v ∈ V (H) we

have ru ⊆ rv in R′. Since u is a vertex of H, we know that u must have

degree at least two in G. Let w be a neighbour of u other than v in

G. Then in R, we have rw ∩ ru 6= ∅. Since ru ⊆ rv, this implies that

rw ∩ rv 6= ∅. But now u, v, w form a triangle in G, contradicting the fact

that G is triangle-free. This proves the claim.

Since H is triangle-free, we have that in H, for any vertex u ∈ V (H)

and any two vertices in v, w ∈ N(u), rv ∩ rw = ∅. This, together with the

fact that R′ is crossing free, implies that the region ru \
⋃
w∈N(u) rw is arc-

connected and non-empty. (To see this, observe that if ru \
⋃
w∈N(u) rw is

non-empty, but is not arc-connected, then there exists two points x, y ∈ ru
and a simple curve c ⊆ ⋃w∈N(u) rw such that x and y are in different arc-

connected components of ru\c. Since for any two vertices in v, w ∈ N(u),

we have rv ∩ rw = ∅, we know that there exists some z ∈ N(u) such that

c ⊆ rz. But this means that x and y are in different arc-connected

components of ru \ rz, contradicting the fact that R′ is crossing-free. If

ru \
⋃
w∈N(u) rw is empty, then ru ⊆

⋃
w∈N(u) rw. Again, since for any two
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Figure 2.3.2: The dotted curves along with the solid points endpoints,
give a planar embedding of the intersection graph of the rectangles in
the figure. The hollow circle contained in the intersection region of two
rectangles, say ru and rv, represents the point puv.

vertices in v, w ∈ N(u), we have rv∩rw = ∅, it must be the case that there

exists some z ∈ N(u) such that ru ⊆ rz. But this contradicts the claim

proved above.) Now choose for every vertex u ∈ V (H), a point pu in

ru \
⋃
w∈N(u) rw. In other words, pu is a point in ru which is not contained

in any rectangle other than ru. For every edge uv ∈ E(H), choose a point

puv that is contained in the rectangular region ru ∩ rv. Further, for each

edge uv ∈ E(H), choose a simple curve su,v between pu and puv that is

completely contained in ru and a simple curve sv,u between pv and puv

that is completely contained in rv such that for any curve in the collection

{su,v, sv,u}uv∈E(H), none of its interior points are contained in any other

curve in the collection. Now the set of simple curves {su,v ∪ sv,u}uv∈E(H)

corresponds to the edges of H and gives a planar embedding of H (please

see Figure 2.3.2 for an example). Hence, G is a planar graph.

2.4 Bounds on the stab number for some graph

classes

In this section, we study the stab number of some subclasses of rectangle

intersection graphs. We show a lower bound on stab(G) for any rectangle

intersection graph G, which is used to derive an asymptotically tight

lower bound for the stab number of grids. We also derive upper bounds
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on estab(G) when G is a split graph or a block graph.

2.4.1 Lower bounds

A c-coloring of G is a mapping φ : V (G)→ {1, 2, . . . , c} such that φ(u) 6=
φ(v) when uv ∈ E(G). A graph is c-colorable if it has a c-coloring. The

chromatic number χ(G) of G is the minimum c such that G is c-colorable.

It is clear that given a k-stabbed rectangle intersection representation

of a graph G, a set of ω(G) colours can be used to properly colour the

vertices whose rectangles have a common stab (since the subgraph in-

duced in G by these vertices is an interval graph). This means that if G

is exactly stabbable, we can use two sets of ω(G) colours each to colour

the vertices on alternate stab lines of a k-exactly stabbed representation

of G (for some k) to obtain a proper colouring of G. Thus, if G is an

exactly stabbable rectangle intersection graph, then χ(G) ≤ 2ω(G). For

general rectangle intersection graphs, we can adapt the same colouring

strategy to get the following observation.

Observation 2.4.1. For a rectangle intersection graph G, we have

χ(G) ≤ stab(G) · ω(G), or in other words, stab(G) ≥ χ(G)
ω(G)

.

We now strengthen the above observation and show that the χ(G)

in the lower bound can be replaced by pw(G) + 1, where pw(G) is the

“pathwidth” of G. A path decomposition of a graph G is a collection

X1, X2, . . . , Xt of subsets of V (G), where t is some positive integer, such

that for each edge uv ∈ E(G), there exists i ∈ {1, 2, . . . , t} such that

u, v ∈ Xi and for each vertex u ∈ V (G), if u ∈ Xi∩Xj, where i < j, then

u ∈ Xk for i ≤ k ≤ j. The width of a path decomposition X1, X2, . . . , Xt

of G is defined to be max1≤i≤t{|Xi|} − 1. The pathwidth of a graph G,

denoted by pw(G), is the width of a path decomposition of G of minimum

width.

We adapt a proof by Suderman [146] to show that if a graph G is

k-SRIG then G has pathwidth at most k · ω(G)− 1.
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Theorem 2.4.1. Let G be a rectangle intersection graph. Then pw(G) ≤
ω(G) · stab(G)− 1, or in other words, stab(G) ≥ pw(G)+1

ω(G)
.

Proof. Let G be a rectangle intersection graph with stab(G) = k . We

shall show that pw(G) ≤ k · ω(G) − 1. Let R be a k-stabbed rectangle

intersection representation of G. Let V (G) = {u1, u2, . . . , un} such that

x+
u1
≤ x+

u2
≤ · · · ≤ x+

un . For i ∈ {1, 2, . . . , n}, let us define the subset

Xi = {v ∈ V (G) : x+
ui
∈ span(v)}. We claim that X1, X2, . . . , Xn is a path

decomposition of G. To see this, note that for any edge uiuj ∈ E(G),

where i < j, ui, uj ∈ Xi. Also, if some vertex v ∈ Xi ∩Xj, where i < j,

then span(v) contains both x+
ui

and x+
uj

, implying that it also contains x+
uk

,

for i ≤ k ≤ j. Therefore, v ∈ Xk, for i ≤ k ≤ j. To complete the proof,

we only need to show that max1≤i≤n{|Xi|} ≤ k · ω(G). Suppose that for

some i ∈ {1, 2, . . . , n}, there exists S ⊆ Xi such that |S| ≥ ω(G) + 1 and

all the vertices of S have a common stab. Since x+
ui
∈ ⋂

u∈S
span(u) and

the rectangles corresponding to the vertices of S all intersect a common

stab line, we have that the vertices of S form a clique in G, which is a

contradiction to the fact that ω(G) is the clique number of G. Therefore,

for any i ∈ {1, 2, . . . , n}, there exists at most ω(G) vertices in Xi that

have a common stab. Since there are only k stab lines in R, we now have

that |Xi| ≤ k · ω(G) for each i ∈ {1, 2, . . . , n}.

The (h,w)-grid is the undirected graph G with V (G) = {(x, y) : x, y ∈
Z, 1 ≤ x ≤ h, 1 ≤ y ≤ w} and E(G) = {(u, v)(x, y) : |u−x|+ |v−y| = 1}.

Corollary 2. Let G be the (h,w)-grid. Then 1
2
(min{h,w} + 1) ≤

stab(G) ≤ estab(G) ≤ min{h,w}.

Proof. It is clear that ω(G) ≤ 2 and from a result of [72] we know that

the pathwidth of the (h,w)-grid is min{h,w}. From these facts and The-

orem 2.4.1, we can infer that, 1
2
(min{h,w} + 1) ≤ stab(G). It is easy

to see that the (h,w)-grid graph has a min{h,w}-exactly stabbed rect-

angle intersection representation as shown in Figure 2.4.1, and therefore
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(a) (b)

Figure 2.4.1: Illustration of min{h,w}-exactly stabbed rectangle in-
tersection representation of the (h,w)-grid: (a) The (3, n)-grid with
n ≥ 3; (b) a 3-exactly stabbed rectangle intersection representation
of the (3, n)-grid.

estab(G) ≤ min{h,w}. The statement of the corollary now follows from

the fact that stab(G) ≤ estab(G).

The above corollary shows that stab(Grids, n) = Θ(
√
n). This also

shows that there are triangle-free rectangle intersection graphs on n ver-

tices whose stab number can be Ω(
√
n). Moreover, these triangle-free

rectangle intersection graphs are exactly stabbable.

2.4.2 Split graphs

A split graph is a graph whose vertex set can be partitioned into a clique

and an independent set. It is known that split graphs can have arbitrar-

ily high boxicity [62]. So it is natural to ask whether the split graphs

within rectangle intersection graphs are all exactly stabbable rectangle

intersection graphs. We show that any split graph with boxicity at most

2 is 3-ESRIG (Theorem 2.4.2) and that there exists a split graph with

boxicity at most 2 which is not 2-ESRIG (Theorem 2.4.3). From Theo-

rem 2.3.2, it then follows that the stab number and exact stab number

are equal for any split graph that has boxicity at most 2. Adiga et al.
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showed that deciding whether a split graph has boxicity at most 3 is NP-

complete [4]. But as far as we know, the problem of deciding whether the

boxicity of a split graph is at most 2 is not known to be polynomial-time

solvable or NP-complete. By our observations below, it follows that this

problem is equivalent to deciding whether a given split graph is 3-ESRIG

(or equivalently, 3-SRIG).

Theorem 2.4.2. A split graph G is a rectangle intersection graph if and

only if G is a 3-ESRIG.

Proof. As G is a split graph, there exists a partition of V (G) into sets

C and I such that C is a clique and I is an independent set. If G is a

3-ESRIG then G is a rectangle intersection graph. Now let G be a split

graph having a rectangle intersection representation R such that for any

two vertices u, v ∈ V (G), {x−u , x+
u , y

−
u , y

+
u } ∩ {x−v , x+

v , y
−
v , y

+
v } = ∅ (note

that such a rectangle intersection representation exists for any rectangle

intersection graph). We shall assume without loss of generality that in

this representation, the origin is contained in
⋂
v∈C rv. For every vertex

u ∈ I, define the region Au =
⋂
v∈N [u] rv. It is easy to see that Au ⊆ ru.

It follows that for vertices u, v ∈ V (G) such that u ∈ I and v /∈ N [u],

Au ∩ rv = ∅. Also, Au is a rectangle (by the Helly property of rectangles)

with non-zero height and width. This means that we can choose a point

pu in Au that is not on the X-axis for each vertex u ∈ I, while satisfying

the additional property that no two points in {pu}u∈I have the same x-

coordinate. Consider u ∈ I. Since the degenerate rectangle given by

the point pu intersects all the rectangles in {rv}v∈N(u), we can replace

the rectangle ru with the degenerate rectangle given by the point pu to

obtain a new rectangle intersection representation of G. Let R′ be the

rectangle intersection representation of G obtained in this fasion, i.e.

R′ = (R \ {ru}u∈I) ∪ {pu}u∈I (see Figure 2.4.2(a)).

Let I+ (respectively I−) be the set of vertices {u ∈ I : pu is above

(respectively, below) the X-axis }. Let ymax = max{y+
v : v ∈ C} and
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(a) (b)

Figure 2.4.2: Representation of split graphs with boxicity at most 2.
(a) The shaded rectangles represent vertices of the independent set of
the split graph and the dots indicate the points pu, for each vertex u in
the independent set. (b) The 3-ESRIG representation derived from the
rectangle intersection representation given in (a).

ymin = min{y−v : v ∈ C}. For each vertex u ∈ I+, we define su to be the

degenerate rectangle given by the vertical line segment whose bottom end

point is pu and top end point has y-coordinate ymax+1. Similarly, for each

vertex u ∈ I−, we define su to be the degenerate rectangle given by the

vertical line segment whose top end point is pu and bottom end point has

y-coordinate ymin− 1. As each rectangle in R′ corresponding to a vertex

in C contains the origin, we have that for any u, v ∈ V (G) such that u ∈ I
and v ∈ C, the rectangle rv intersects su if and only if rv contains pu.

Therefore, the collection of rectangles given by (R′ \ {pu}u∈I) ∪ {su}u∈I
is a rectangle intersection representation of G. It is easy to see that this

rectangle intersection representation, together with the horizontal lines

y = ymin − 1, y = 0, and y = ymax + 1, forms a 3-ESRIG representation

of G (see Figure 2.4.2(b)).

Theorem 2.4.3. There is a split graph G which is a rectangle intersection

graph but not a 2-ESRIG.

Proof. Let G be the split graph whose vertex set is partitioned into a

clique C on four vertices and an in independent set I of 14 vertices, and
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(a) (b)

Figure 2.4.3: (a) A planar split graph which is 3-ESRIG but not 2-
ESRIG. The clique vertices are coloured black and the remaining ver-
tices are independent vertices. (b) A rectangle intersection representa-
tion of the graph shown in (a). The vertices corresponding to the inde-
pendent set are represented as points.

whose edges are defined as follows. Let X be the set of all subsets X

of C with 1 ≤ |X| ≤ 3. For every X ∈ X , there is exactly one vertex

uX ∈ I such that N(uX) = X. See Figure 2.4.3(a) for a drawing of the

graph G. Clearly, G has a rectangle intersection representation as shown

in Figure 2.4.3(b).

Now assume for the sake of contradiction that G has a 2-ESRIG rep-

resentation R. We can assume that the stab lines are y = 0 and y = 1.

We shall further assume that all the rectangles are contained in the strip

of the plane between the two stab lines, i.e. for each v ∈ V (G), we have

y−v ≥ 0 and y+
v ≤ 1 (it is easy to see that every 2-ESRIG representation

can be converted to such a 2-ESRIG representation by “trimming” the

parts of the rectangles that lie above the top stab line and below the

bottom stab line).

Observe that for each X ∈ X , the rectangle ruX intersects all the

rectangles in {rv}v∈X and is disjoint from each rectangle in {rv}v∈C\X .

Now choose a point pX ∈ ruX ∩
⋂
v∈X rv. Clearly, pX ∈

⋂
v∈X rv and
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pX /∈ ⋃v∈C\X rv.

Let a, b ∈ C (not necessarily distinct) such that x−a = max{x−v }v∈C and

x+
b = min{x+

v }v∈C . Let c, d be two distinct vertices in C \ {a, b}. By our

choice of a and b, we have [x−a , x
+
b ] ⊆ span(c) and [x−a , x

+
b ] ⊆ span(d), or

in other words [x−a , x
+
b ] ⊆ span(c) ∩ span(d).

Claim. The vertices c and d have a common stab.

Suppose for the sake of contradiction that c and d do not have a common

stab. Then, since [x−a , x
+
b ] ⊆ span(c)∩ span(d) and rc ∩ rd 6= ∅, it follows

that the rectangle [x−a , x
+
b ] × [0, 1] ⊆ rc ∪ rd. We thus have ra ∩ rb ⊆

[x−a , x
+
b ]× [0, 1] ⊆ rc ∪ rd. But this contradicts the fact that there exists

a point p{a,b} such that p{a,b} ∈ ra ∩ rb and p{a,b} /∈ rc ∪ rd. This proves

the claim.

By the above claim, we shall assume without loss of generality that c

and d are on the stab line y = 0 and that y+
c ≤ y+

d . This implies that

[x−a , x
+
b ]× [0, y+

c ] ⊆ [x−a , x
+
b ]× [0, y+

d ] ⊆ rd (recall that [x−a , x
+
b ] ⊆ span(d)).

Note that ra ∩ rb ∩ rc ⊆ [x−a , x
+
b ]× [0, y+

c ], implying that ra ∩ rb ∩ rc ⊆ rd.

But this contradicts the fact that there exists a point p{a,b,c} such that

p{a,b,c} ∈ ra ∩ rb ∩ rc and p{a,b,c} /∈ rd.

2.4.3 Block graphs

A graph G is a block graph if every block (i.e 2-connected component)

of G is a clique. Note that all trees are block graphs. It is not hard to

see that all trees, and indeed all block graphs, are rectangle intersection

graphs. We show that all block graphs are exactly stabbable rectangle

intersection graphs and give an upper bound of dlogme for the exact

stab number of block graphs with m blocks, where m ≥ 2. Note that this

implies an upper bound of dlog ne for the exact stab number of trees on n

vertices. We shall show in Section 2.7 that this bound is asymptotically

tight, by constructing trees whose stab number is Ω(log n).
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Let G be a block graph. Given a k-exactly stabbed rectangle intersec-

tion representation R of G, we say that a set of vertices S ⊆ B, where

B is a block in G, is accessible if all vertices in S are on the bottom stab

line of R and for any vertex v /∈ S either v is not on the bottom stab line

or x−u < x−v for every vertex u ∈ S.

Theorem 2.4.4. For any block graph G with m blocks, estab(G) ≤
max{1, dlogme}.

Proof. Note that we only need the statement of the theorem to be proved

for connected graphs. In fact, we shall prove the following stronger claim

for connected graphs.

Claim. Let G be any connected block graph with m blocks and let k =

max{1, dlogme}. Then for any block B of G, any subset S of B, any

a, b ∈ R such that a < b, and any h ∈ R such that 0 ≤ h < 1, there is a

k-exactly stabbed rectangle intersection representation R(S, a, b, h) of G

with stab lines y = 0, y = 1, y = 2, . . ., y = k − 1 such that:

• S is accessible,

• for every vertex u ∈ V (G), span(u) ⊆ (a, b),

• for every vertex u ∈ V (G) that is on the bottom stab line, we have

y+
u > h, and

• for every vertex u ∈ V (G) that is not on the bottom stab line, we

have y−u > h.

Proof. We prove the claim by induction on m. When m ≤ 2, G is an

interval graph. It is not hard to see that the statement of the claim is

true in this case. From here onwards, we shall assume that m ≥ 3, and

that the statement of the claim is true when the number of blocks in the

graph is lesser than m.
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Let H be the set of components of G − B. It is easy to see that each

graph H ∈ H is a block graph and at most one of them can have greater

than m
2

blocks. We shall denote the graph in H that has greater than m
2

blocks, if it exists, as H∗. For a vertex u ∈ B, let Hu = {H ∈ H : N(u)∩
V (H) 6= ∅}. Note that for u, v ∈ B such that u 6= v, Hu ∩ Hv = ∅.
Also, since G is connected, {Hu}u∈B is a partition of H. If H∗ exists, let

u∗ ∈ B be the vertex such that H∗ ∈ Hu∗ .

Let IB = {[cu, du]}u∈B be an interval representation of G[B] (which

is a complete graph) such that all endpoints of intervals are distinct,

[cu, du] ⊆ (a, a+b
2

) for any u ∈ V (G), and for any u ∈ S and v ∈ B \S, we

have cu < cv. Let B = {u1, u2, . . . , u|B|}, where cu1 < cu2 < · · · < cu|B| .

We shall define cu|B|+1
= du|B| (this shall be used later on). Choose |B|

real numbers h1, h2, . . . , h|B| such that h < h1 < h2 < · · · < h|B| < 1.

We define ru for every vertex u ∈ B other than u∗ as follows: ru =

[cu, du] × [0, hi], where i ∈ {1, 2, . . . , |B|} is such that u = ui. We shall

show how to define ru∗ , in case u∗ exists, later.

For each i ∈ {1, 2, . . . , |B|}, let H′i = Hui \ {H∗}, if H∗ exists, and

H′i = Hui otherwise. Let ti = |H′i|. For each i ∈ {1, 2, . . . , |B|}, let

H′i = {Hi,1, Hi,2, . . . , Hi,|ti|} and for each j ∈ {1, 2, . . . , ti}, let Si,j =

N(ui)∩V (Hi,j) (which is nonempty by the definition ofHui). For each i ∈
{1, 2, . . . , |B|}, choose ti+1 real numbers cui < qi,1 < qi,2 < · · · < qi,ti+1 <

cui+1
(recall that cu|B|+1

= du|B|). Now consider any i ∈ {1, 2, . . . , |B|} and

any j ∈ {1, 2, . . . , ti}. As the number of blocks in Hi,j is at most m
2

, we

can apply the induction hypothesis on Hi,j to conclude that there is a

max{1, dlogme−1}-exactly stabbed rectangle intersection representation

R′i,j = R(Si,j, qi,j, qi,j+1, 0) of Hi,j. Since m ≥ 3, we know that k ≥ 2

and that max{1, dlogme − 1} = k − 1. Thus, R′i,j uses the stab lines

y = 0, y = 1, . . ., y = k − 2. For each vertex v ∈ V (Hi,j), let r′v =

[x′−v , x
′+
v ] × [y′−v , y

′+
v ] be the rectangle corresponding to v in R′i,j. We

now define rv for each vertex v ∈ V (Hi,j) for all i ∈ {1, 2, . . . , |B|} and

j ∈ {1, 2, . . . , ti} as follows. If v ∈ Si,j, then rv = [x′−v , x
′+
v ]× [hi, y

′+
v + 1].

42



If v ∈ V (Hi,j)\Si,j and v is on the bottom stab line ofR′i,j, then we define

rv = [x′−v , x
′+
v ]× [1, y′+v +1]. Lastly, if v ∈ V (Hi,j)\Si,j, but v is not on the

bottom stab line of R′, then we define rv = [x′−v , x
′+
v ]× [y′−v + 1, y′+v + 1].

(*) For an integer i ∈ {1, 2, . . . , |B|} and a vertex v of some H ∈ H′i,
we have [x−v , x

+
v ] ⊂ [cui , cui+1

].

(+) For an integer i ∈ {1, 2, . . . , |B|} and for any two distinct integers

j, k ∈ {1, 2, . . . , ti} let u be a vertex in V (Hi,j) and v be a vertex in

V (Hi,k). Then ru ∩ rv = ∅ (since [x−u , x
+
u ], [x−v , x

+
v ] belong respectively to

the intervals (qi,j, qi,j+1), (qi,k, qi,k+1) which are disjoint).

(++) Let i, j be two distinct integers in {1, 2, . . . , |B|}. Let u be a

vertex in some graph in H′i and v be a vertex in some graph in H′j. Then

ru ∩ rv = ∅ (since [x−u , x
+
u ], [x−v , x

+
v ] belong respectively to the intervals

(cui , cui+1
), (cuj , cuj+1

) which are disjoint).

We now define a rectangle rv for each vertex v ∈ V (H∗) and the rect-

angle ru∗ for u∗, in case H∗ exists. Let S∗ = N [u∗] ∩ V (H∗). Since H∗

contains less than m blocks, and recalling that k = max{1, dlogme}, we

have by the induction hypothesis that H∗ has a k-exactly stabbed rectan-

gle intersection representation R∗ = R(S∗, a+b
2
, b, h|B|) that uses the stab

lines y = 0, y = 1, . . ., y = k−1. Let the rectangle inR∗ corresponding to

a vertex v ∈ V (H∗) be denoted by r∗v = [x∗−v , x∗+v ]× [y∗−v , y∗+v ]. We define

rv = r∗v for every vertex v ∈ V (H∗). We now let ru∗ = [cu∗ ,max{x∗−v : v ∈
S∗}]× [0, hi], where i ∈ {1, 2, . . . , |B|} is such that u∗ = ui.

(+++) Let i be any integer in {1, 2, . . . , |B|}. Let u be a vertex of some

graph in H′i and v be a vertex of H∗. Then ru ∩ rv = ∅ (since [x−u , x
+
u ],

[x−v , x
+
v ] belong respectively to the intervals (a, a+b

2
), (a+b

2
, b) which are

disjoint).

We now verify that R = {ru}u∈V (G) forms a dlogme-exactly stabbed

rectangle intersection representation of G that satisfies all the require-

ments to be R(S, a, b, h). For a vertex u ∈ V (G), let x−u , x
+
u , y

−
u , y

+
u be
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such that ru = [x−u , x
+
u ]× [y−u , y

+
u ].

From the construction of R, it is clear that all the vertices in B, and

therefore all the vertices in S, are on the bottom stab line. It is also

easy to see that the only vertices on the bottom stab line other than the

vertices in B are some vertices in V (H∗). For any vertex u ∈ B and

v ∈ V (H∗), we have x−u < a+b
2
< x−v . Note that for any vertex u ∈ B,

we have x−u = cu. Therefore, for vertices u, v ∈ B such that u ∈ S and

v ∈ B \ S, we have x−u < x−v (recall that cu < cv in this case). From this,

we can infer that S is accessible in R.

It is clear that for each u ∈ V (G), ru ⊂ (a, b). Now consider any vertex

v that is on the bottom stab line in R. As explained before, v is either

in B or in V (H∗). If v ∈ B, then v = ui for some i ∈ {1, 2, . . . , |B|},
and y+

v = hi > h. On the other hand, if v ∈ V (H∗), then rv = r∗v, the

rectangle corresponding to v in R∗. Since R∗ = R(S∗, a+b
2
, b, h|B|), we

know that y∗+v > h|B| > h, and therefore we have y+
v > h. Therefore, for

every vertex v ∈ V (G) that is on the bottom stab line, we have y+
v > h.

Now consider a vertex v ∈ V (G) that is not on the bottom stab line in

R. It is clear that v /∈ B. If v ∈ V (H), where H 6= H∗ and H ∈ Hui ,

for some i ∈ {1, 2, . . . , |B|}, then by our construction, y−v ≥ hi > h. If

v ∈ V (H∗), then we know that since v is not on the bottom stab line ofR,

it is also not on the bottom stab line of R∗. Since R∗ = (S∗, a+b
2
, b, h|B|),

this means that y∗−v > h|B| > h. As y−v = y∗−v , we now have y−v > h. This

shows that R satisfies the four conditions to be chosen as R(S, a, b, h).

As it can be easily verified that each rectangle in R is intersected by

exactly one of the stab lines y = 0, y = 1, . . ., y = k − 1, it only remains

to be shown that R is a rectangle intersection representation of G. Even

though this is more or less clear from the construction, we give a proof

for the sake of completeness. Consider u, v ∈ V (G). We shall show that

uv ∈ E(G) if and only if ru ∩ rv 6= ∅.

(i) First, let us consider the case when u, v ∈ V (H∗). Since we have
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ru = r∗u and rv = r∗v, ru ∩ rv 6= ∅ ⇔ r∗u ∩ r∗v 6= ∅. Since R∗ is a valid

representation of H∗, we have ru ∩ rv 6= ∅ ⇔ uv ∈ E(H∗) ⇔ uv ∈
E(G).

(ii) Next, let us consider the case when u ∈ B and v ∈ V (H∗). If u 6= u∗

then H∗ /∈ Hu and thus uv /∈ E(G). Also, we have [x−u , x
+
u ] ⊆

(a, a+b
2

) (since u 6= u∗) and [x−v , x
+
v ] ⊆ (a+b

2
, b). Hence ru ∩ rv = ∅.

Now assume that u = u∗ = ui (for some i ∈ {1, 2, . . . , |B|}). Recall

that S∗ = N(u) ∩ V (H∗). Suppose first that v ∈ S∗. Then uv ∈
E(G). Now from the definition of R∗ and ru∗ = ru, we have that

both rv and ru intersect the stab line y = 0, x−v = x∗−v and that x+
u =

max{x∗−w : w ∈ S∗}. Combining these, we have x−v ≤ x+
u . This gives

us x−u < a+b
2
< x−v ≤ x+

u , implying that ru ∩ rv 6= ∅. Now assume

that v /∈ S∗, from which it follows that uv /∈ E(G). If rv = r∗v

intersects the stab line y = 0, then since R∗ = R(S∗, a+b
2
, b, h|B|),

we have that max{x−w : w ∈ S∗} < x−v , implying that x+
u < x−v

(recall that u = u∗). Therefore, ru ∩ rv = ∅. The only remaining

case is if rv does not intersect the bottom stab line. Then, since

rv = r∗v and R∗ = R(S∗, a+b
2
, b, h|B|), we have y∗−v > h|B| ≥ hi = y+

u ,

where i ∈ {1, 2, . . . , |B|} is such that u = u∗ = ui. Therefore

ru ∩ rv = ∅.

(iii) Next, let u be a vertex of some graph in H′i for some i ∈
{1, 2, . . . , |B|} and v be a vertex in H∗. Then clearly uv /∈ E(G)

and by (+++) we have that ru ∩ rv = ∅.

(iv) Next, suppose that u, v ∈ B. Note that for every vertex u ∈ B \
{u∗}, we have x−u = cu and x+

u = du. Since we have x−u∗ = cu∗ and

x+
u∗ = max{x∗−v : v ∈ S∗} > a+b

2
> du∗ , we can conclude that for

every vertex u ∈ B, [cu, du] ⊆ [x−u , x
+
u ]. As G[B] is a clique, we have

uv ∈ E(G). By our construction, both u and v are on the bottom

stab line, and since [cu, du]∩[cv, dv] 6= ∅, we have [x−u , x
+
u ]∩[x−v , x

+
v ] 6=
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∅. We thus have ru ∩ rv 6= ∅.

(v) Next, let us consider the case when u ∈ B and v is a vertex of some

graph in H′i. First, let us consider the case when u = ui. Let v be a

vertex in Hi,j for some j ∈ {1, 2, . . . , ti}. If uv ∈ E(G), then v ∈ Si,j
(recall that Si,j = N(ui)∩V (Hi,j)). In this case, we have by (*) that

[x−v , x
+
v ] ⊂ [cui , cui+1

] and thus [x−v , x
+
v ] ⊂ [x−u , x

+
u ]. Furthermore, we

have by construction that y−v = hi = y+
u , allowing us to conclude

that ru ∩ rv 6= ∅. If uv /∈ E(G), then v /∈ Si,j, and therefore by

construction, we know that y−v ≥ 1 whereas y+
u = hi < 1. Therefore

the two rectangles ru and rv do not intersect. Now let us consider

the case when u 6= ui. In this case, we have uv /∈ E(G). Let

u = uj and assume j < i. Then from our construction, we have

that y−v ≥ hi > hj = y+
u and therefore ru ∩ rv = ∅. Now assume

j > i. Then from (*), we know that x+
v < cui+1

≤ x−u and therefore

conclude that ru ∩ rv = ∅.

(vi) Next, let i, j be two distinct integers in {1, 2, . . . , |B|}. Let u be a

vertex of some graph in H′i and v be a vertex of some graph in H′j.
Then clearly uv /∈ E(G) and by (++) we have that ru ∩ rv = ∅.

(vii) Next, let i be an integer in {1, 2, . . . , |B|} and j, k be two distinct

integers in {1, 2, . . . , ti}. Let u be a vertex in Hi,j and v be a vertex

ofHi,k. Then clearly uv /∈ E(G) and by (+) we have that ru∩rv = ∅.

(viii) Finally, let i be an integer in {1, 2, . . . , |B|} and j be an integer in

{1, 2, . . . , ti}. Let u, v ∈ V (Hi,j). Let {r′w}w∈V (Hi,j) = R′i,j. Also,

let r′w = [x′−w , x
′+
w ] × [y′−w , y

′+
w ]. Then we have [x−u , x

+
u ] = [x′−u , x

′+
u ],

[x−v , x
+
v ] = [x′−v , x

′+
v ], y+

u = y′+u +1, y+
v = y′+v +1, y−u ∈ {1, hi, y′−u +1},

and y−v ∈ {1, hi, y′−v + 1}. Let us assume without loss of generality

that y−u ≤ y−v . We now have [y−u , y
+
u ] ∩ [y−v , y

+
v ] = ∅ ⇔ y+

u < y−v ⇔
y′+u + 1 < y−v . Recall that y−v ∈ {1, hi, y′−v + 1}. If y′+u + 1 < y−v and

y−v ∈ {1, hi}, then we have y′+u < 0, which is not possible (as no
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stab line of R′i,j could have intersected r′u). We can thus continue

the derivation as y′+u + 1 < y−v ⇔ y′+u + 1 < y′−v + 1 ⇔ y′+u <

y′−v ⇔ [y′−u , y
′+
u ] ∩ [y′−v , y

′+
v ] = ∅. Since we have [x−u , x

+
u ] = [x′−u , x

′+
u ]

and [x−v , x
+
v ] = [x′−v , x

′+
v ], it is clear that [x−u , x

+
u ] ∩ [x−v , x

+
v ] = ∅ ⇔

[x′−u , x
′+
u ]∩ [x′−v , x

′+
v ] = ∅. We can thus conclude that ru ∩ rv = ∅ ⇔

r′u ∩ r′v = ∅. Since R′i,j is a valid representation of Hi,j, we have

ru ∩ rv = ∅ ⇔ uv /∈ E(Hi,j)⇔ uv /∈ E(G).

This completes the proof.

2.5 Asteroidal subgraphs in a graph

In this section, we present a forbidden structure for k-SRIGs and k-

ESRIGs that generalizes the “asteroidal triples” of Lekkerkerker and

Boland [26]. We then study the block-trees of graphs in the context

of these forbidden structures, to derive some preliminary observations

which shall be used in the proofs in Section 2.6. First, we give some basic

definitions.

We say that two subgraphs G1, G2 of a graph G are neighbour-disjoint

if for any vertex v ∈ V (G1), N [v] ∩ V (G2) = ∅. In other words, V (G1)

and V (G2) are disjoint and there is no edge between a vertex in V (G1)

and a vertex in V (G2).

Let G be any graph. Given a vertex v ∈ V (G), we say that a path P

misses v, if no vertex in P is a neighbour of v. Similarly, given a subgraph

H of G we say that P misses H if P misses each vertex in V (H); in other

words, P misses H exactly when P and H are neighbour-disjoint.

Recall that, given a graph G, three vertices a, b, c ∈ V (G) are said

to form an asteroidal triple, or AT for short, in G if there exists a path

between any two vertices in {a, b, c} that misses the third. A graph is

said to be AT-free if it contains no asteroidal triple.
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Definition 2.5.1. Three connected induced subgraphs G1, G2, G3 of G

that are pairwise neighbour-disjoint are said to be asteroidal in G if for

each i ∈ {1, 2, 3}, for any i, j, k such that {i, j, k} = {1, 2, 3}, there is a

path from some vertex of Gi to some vertex of Gj that misses Gk.

Suppose G1, G2, G3 are asteroidal in a graph G. Then from the above

definition, they are pairwise neighbour-disjoint and each of them is con-

nected. This implies that for any i, j, k such that {i, j, k} = {1, 2, 3}, and

for any u ∈ V (Gi) and any v ∈ V (Gj), there is some path between u and

v that misses Gk.

Definition 2.5.2. Let C be a class of graphs and let G be any graph. Let

G1, G2, G3 be asteroidal in G and let Gi ∈ C for i ∈ {1, 2, 3}. Then we

say that G1, G2, G3 are asteroidal-C in G.

Definition 2.5.3. We say that a graph G is asteroidal-C-free if there are

no three subgraphs that are asteroidal-C in G.

2.5.1 A forbidden structure for k-SRIGs and k-ESRIGs

We now show that no k-SRIG can contain three subgraphs that are

asteroidal-(non-(k − 1)-SRIG) in it. The same technique can be used to

show that a k-ESRIG cannot contain three subgraphs that are asteroidal-

(non-(k − 1)-ESRIG) in it. The intuition is that if a k-SRIG G contains

subgraphs G1, G2, G3 which are asteroidal-(non-(k−1)-SRIG) in G, then

in any k-stabbed rectangle intersection representation of G, the rectangles

corresponding to vertices in Gi, for each i ∈ {1, 2, 3}, together occupy all

the stab lines (as each Gi is a non-(k − 1)-SRIG). Coupled with the fact

that the three subgraphs are pairwise neighbour-disjoint, this enforces

a kind of “left-to-right” order on the subgraphs: that is, in the k-SRIG

representation, for distinct i, j ∈ {1, 2, 3}, the collection of rectangles cor-

responding to vertices of Gi can be thought of as being “to the left of” or

“to the right of” the collection of rectangles corresponding to the vertices
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of Gj. If we take this left-to-right order of subgraphs to be G1, G2, G3,

then it can be shown that any path from a vertex of G1 to a vertex of G3

must contain a vertex whose rectangle intersects a rectangle belonging to

a vertex of G2, thus contradicting the fact that G1, G2, G3 are asteroidal

in G. We give the formal proof below.

Theorem 2.5.1. k-SRIGs are asteroidal-(non-(k − 1)-SRIG)-free.

Proof. Assume for the sake of contradiction that G is a k-SRIG with a k-

stabbed rectangle intersection representation R and has three connected

induced non-(k− 1)-SRIG subgraphs G1, G2, G3 that are asteroidal in G.

As each of G1, G2, G3 are non-(k − 1)-SRIGs, but are k-SRIGs (as they

are induced subgraphs of G), for each i ∈ {1, 2, 3}, there exists a walk Wi

in Gi such that Wi contains at least one vertex on each stab line of R (for

example, Wi can be chosen to be any path in Gi between a vertex on the

top stab line and a vertex on the bottom stab line). This further implies

that for each i ∈ {1, 2, 3}, there exists a vertex vi in Wi that is on the

bottom stab line. As G1, G2, G3 are pairwise neighbour-disjoint, we know

that span(v1), span(v2), span(v3) are pairwise disjoint. Therefore we can

assume without loss of generality that span(v1) < span(v2) < span(v3).

Now consider the set of vertices S = {w : w ∈ N [w′] for some w′ ∈ W2}.
Consider the region X of the plane defined by X =

⋃
u∈W2

ru. Since

W2 is connected and has a vertex on each stab line, X is an arc-connected

region that intersects all the stab lines. Clearly, for any vertex x such that

rx ∩X 6= ∅ we can conclude that x ∈ S. Now let B be the rectangle with

diagonally opposite corners (x1, y1) and (x2, y2) where x1 = min{x−v : v ∈
V (G)}, x2 = max{x+

v : v ∈ V (G)}, y = y1 is the bottom stab line and

y = y2 is the top stab line of R.

Claim. The rectangles B ∩ rv1 and B ∩ rv3 are completely contained in

different arc-connected regions of B \X.

Since v1 and v3 have no neighbours in W2, and therefore are not in S,

we can infer from our earlier observation that the rectangles B ∩ rv1 and
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B ∩ rv3 are disjoint from X. This means that each of these rectangles

are completely contained in some arc-connected region of B \X. Assume

for the sake of contradiction that the rectangles B ∩ rv1 and B ∩ rv3 are

completely contained in the same connected region of B\X. This implies

that there exists a curve s in B \X that connects some point in B ∩ rv1
that is on the bottom stab line to some point in B ∩ rv3 that is also on

the bottom stab line. Now consider the points p, q ∈ X such that p is on

the top stab line and q is a point in rv2 that is on the bottom stab line.

Since X is connected, there is a curve s′ in X that connects p, q. Since

span(v1) < span(v2) < span(v3) and s, s′ are curves that are completely

contained in B, we can conclude that the curves s and s′ intersect. But

this is a contradiction, as s is a curve in B \X and hence cannot contain

any point in s′ ⊆ X. This completes the proof of the claim.

As G1, G2, G3 are asteroidal in G, there is a path P between v1 and

v3 that misses G2. This means that the path P does not contain any

vertex from S, and therefore the rectangle corresponding to no vertex in

P intersects X. Since every rectangle in the representation intersects B,

this means that
⋃
w∈V (P ) B ∩ rw is an arc-connected set in B \ X that

contains both B ∩ rv1 and B ∩ rv3 . This is a contradiction to the above

claim.

The following theorem can be proved using the similar arguments, and

hence we omit the proof.

Theorem 2.5.2. k-ESRIGs are asteroidal-(non-(k − 1)-ESRIG)-free.

Remark 2.5.1. The stab number of a rectangle intersection graph with

n vertices is at most n. Therefore, rectangle intersection graphs with n

vertices must be asteroidal-(non-(n− 1)-SRIG)-free.
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2.5.2 The coloured block-tree of a graph

A hereditary class of graphs is a class of graphs that is closed under taking

induced subgraphs. A class of graphs is said to be closed under vertex

addition if adding a vertex (and an arbitrary set of edges incident on it)

to any graph in the class results in another graph that is in the class.

It can be seen that a class of graphs is closed under vertex addition if

and only if its complement class (the set of graphs that are not in the

class) is hereditary. Therefore, the class of non-k-SRIGs and the class of

non-k-ESRIGs, for any positive integer k, are both closed under vertex

addition. In this section, we study the block-tree (defined below) of an

asteroidal-C-free graph, where C is some graph class that is closed under

vertex addition. The lemmas derived in this section will be useful in the

next section.

For any graph G, let B(G) be the set of blocks in it and C(G) the set of

cut-vertices in it. The block-tree of G (denoted as TG) is the graph with

V (TG) = B(G) ∪ C(G) and E(TG) = {Bc : B ∈ B(G), c ∈ C(G), and

c ∈ B}. For any graph G, the graph TG turns out to be a tree, justifying

the name “block-tree of G” [68].

For e = Bc ∈ E(TG), where c ∈ C(G) and B ∈ B(G), we denote by

TG(e) the connected component of TG − e containing B. Also, let us

define

Ge = G[
⋃

B∈TG(e)

B \ {c}]

In other words, Ge is the component of G−{c} that contains the vertices

of B other than c. Note that Ge is a connected induced subgraph of G.

The following observation is a direct consequence of the structure of the

block-tree.

Observation 2.5.1. The vertices of G other than c that belong to blocks

not in TG(e) are neither in Ge nor are adjacent to any vertex in Ge.

Let C be a class of graphs. Let us now colour red those edges e of TG
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such that Ge ∈ C. Further, let us colour red those cut-vertices in TG that

have at least two red edges incident on them. Note that if two red edges

e1 and e2 are incident on a cut-vertex u in TG, then Ge1 and Ge2 are two

components of G − {u}. As the final step of colouring, we colour red

those block-vertices of TG that are adjacent to at least two cut-vertices

that are red. We now say that the tree TG is coloured with respect to C.

Lemma 2.5.1. Let C be a class of graphs that is closed under vertex

addition. Let G be any graph and let TG be coloured with respect to C.

Then the subgraph of TG induced by the set of red vertices is connected.

Proof. We only need to prove that for any u, v ∈ V (TG) that are coloured

red, any vertex w ∈ V (TG) that lies on the path in TG between u and v is

also red. Let P be the path between u and v in TG. If u is a cut-vertex,

then let u′ = u and if u is a block-vertex, then let u′ be a red cut-vertex

that is adjacent to u but is not on P . Similarly, if v is a cut-vertex, then

we let v′ = v and if v is a block-vertex, we let v′ be a red cut-vertex that

is adjacent to v but is not on P . Clearly, the path P ′ in TG between u′

and v′ also contains w. It can be seen that there is a red edge eu that

is incident on u′ but does not belong to P ′ and a red edge ev that is

incident on v′ but does not belong to P ′. As eu and ev are red edges, we

know that Geu , Gev ∈ C. Now consider any edge e that is in P ′. From

the structure of the block-tree, it follows that either V (Geu) ⊆ V (Ge) or

V (Gev) ⊆ V (Ge). (To see this, let z be the cut-vertex in e and assume

that u′ is closer to z than v′ in TG. Then, TG(ev) is a subtree of TG(e).

Note that z is not adjacent to any block-vertex of TG(ev), implying that z

is not contained in any block that appears as a block-vertex in TG(ev). We

now have that V (Gev) ⊆ V (Ge).) Since C is closed under vertex addition,

we now have that Ge ∈ C, which implies that e is red. Therefore, every

edge in P ′ is red. It now follows that every cut-vertex in P ′ other than

u′ and v′ are incident with at least two red edges. Therefore every cut-

vertex in P ′ is red (recall that u′ and v′ are red by definition). This tells
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us that every block-vertex in P ′ is adjacent to two red cut-vertices, and

is therefore red. This proves that w is red.

Lemma 2.5.2. Let G be a graph and C a class of graphs closed under

vertex addition. Let TG be coloured with respect to C and let B be the set of

block-vertices of TG that have at least one red neighbour (or equivalently,

the blocks of G that contain at least one cut-vertex that is red in TG).

Furthermore, assume that TG has at least one red vertex. Let H be any

component of G− ⋃
B∈B

B. Then:

(a) there exists exactly one vertex u ∈ V (G) \ V (H) such that N(u) ∩
H 6= ∅, and

(b) H /∈ C.

Proof. Let us mark the block-vertices in TG corresponding to blocks of G

that contain at least one vertex of H and also mark the cut-vertices in

TG corresponding to cut-vertices of G that are in H. Clearly, the block-

vertices that are marked are not in B. Since H is connected, it follows

from the structure of the block-tree that the marked vertices of TG form

a subtree of TG whose leaves are all marked block-vertices. Further, it is

clear that any unmarked cut-vertex that is adjacent to a marked block-

vertex belongs to some block in B (otherwise, that cut-vertex would have

been in H and therefore marked). Now suppose there exist two distinct

edges e = uX and e′ = u′X ′ of TG where X,X ′ are marked block-vertices

and u, u′ are unmarked cut-vertices. Let B,B′ be the blocks in B that

contain u, u′ respectively. As B,B′ ∈ B, there exist red cut-vertices

v, v′ adjacent to B,B′ respectively where u 6= v and u′ 6= v′. From

Lemma 2.5.1, we know that the red vertices in TG induce a connected

subtree of TG. Therefore, every vertex in the path in TG between v and

v′ has to be red. This implies that u is red, which further implies that

X ∈ B. But this contradicts the fact that X is a marked block-vertex.
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We can therefore conclude that there exist at most one marked block-

vertex X that has an unmarked neighbour in TG. Since TG contains at

least one marked vertex and at least one unmarked vertex (as V (H) 6= ∅
and B 6= ∅), we have that there is exactly one marked block-vertex X

such that it has an unmarked neighbour u in TG. It now follows from the

structure of the block-tree that H = GuX . This implies that no vertex in

H can have a neighbour in V (G) \ V (H) other than u. This proves (a).

We shall now prove (b). Suppose for the sake of contradiction that

H ∈ C, or in other words, GuX ∈ C. So, the edge uX is red in TG.

Claim. The cut-vertex u of TG is red.

As observed earlier, u is in some block that is in B. Let B ∈ B be a block

containing u. So uB is an edge of TG. Since B ∈ B, there must be some

red cut-vertex u′ in TG that is adjacent to B. Clearly, u′ 6= u, as otherwise,

X would have been adjacent to a red cut-vertex, and hence it would have

been in B. But this cannot happen as X contains vertices from H. Since

u′ is a red cut-vertex, it has at least two red edges incident on it and

therefore there is a red edge e incident on u′ that is different from u′B.

From the definition of red edges, we have that Ge ∈ C. It follows from

the structure of the block-tree that Ge is an induced subgraph of GuB.

As C is closed under vertex addition, we have that GuB ∈ C, implying

that the edge uB is red in TG. We now have two red edges, uX and uB,

incident on u, which means that u is a red cut-vertex of TG.

From the above claim, it follows that X is a block-vertex of TG that

is incident to a red cut-vertex u, and hence it is in B. But this is a

contradiction as B contains vertices of H. This proves (b).

Lemma 2.5.3. Let C be a class of graphs that is closed under vertex

addition. Let G be an asteroidal-C-free graph and let TG be coloured with

respect to C. Then the subgraph Tr of TG induced by the set of red vertices

is either empty or is a path.
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Proof. If there are no red vertices in TG, then there is nothing to prove.

So let us suppose that Tr is not empty. From Lemma 2.5.1, it follows

that Tr is connected. It only remains to be shown that every vertex has

degree at most two in Tr. Suppose for the sake of contradiction that u is

a red vertex that has three red neighbours u1, u2, u3.

Let us first consider the case when u is a block-vertex. Then, clearly

u1, u2, u3 are all cut-vertices. Since each ui, for i ∈ {1, 2, 3} is red, we

know that there are two red edges incident on each of them. This means

that for each i ∈ {1, 2, 3} there is a red edge ei different from uui that is

incident on ui. It is clear from Observation 2.5.1 that Ge1 , Ge2 , Ge3 are

pairwise neighbour-disjoint connected induced subgraphs of G. Because

e1, e2, e3 are red, we know that Ge1 , Ge2 , Ge3 ∈ C. For each i ∈ {1, 2, 3},
let vi be a neighbour of ui in Gei . Let the block-vertex u in TG correspond

to a block B in G. From the definition of the block-tree, we know that

u1, u2, u3 ∈ B. Since B is a 2-connected subgraph of G, for any i, j, k

such that {i, j, k} = {1, 2, 3}, there exists a path Pij in B between ui and

uj that does not contain uk. Let P ′ij = Pij ∪ {uivi, ujvj}. From Observa-

tion 2.5.1, it follows that P ′ij misses Gek . This means that Ge1 , Ge2 , Ge3

are asteroidal-C in G, contradicting the fact that G is asteroidal-C-free.

Next, let us consider the case when u is a cut-vertex. Then, u1, u2, u3

are block-vertices that are coloured red. Since each of them have to

be adjacent to at least two red cut-vertices, we know that for each i ∈
{1, 2, 3}, there is a red cut-vertex u′i different from u that is adjacent to

ui. Then again, as for each i ∈ {1, 2, 3}, u′i is red, we can infer that

there is a red edge ei different from u′iui that is incident on u′i. As before,

Ge1 , Ge2 , Ge3 form neighbour-disjoint connected induced subgraphs of G

that all belong to C. For each i ∈ {1, 2, 3}, let vi be a neighbour of u′i

in Gei . It is now clear from the structure of the block-tree that for any

i, j, k such that {i, j, k} = {1, 2, 3}, there is a path Pij in G between u′i and

u′j that does not contain u′k. We can now infer using Observation 2.5.1

that the path P ′ij = Pij ∪ {viu′i, vju′j} misses Gek . So we again have
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that Ge1 , Ge2 , Ge3 are asteroidal-C in G, contradicting the fact that G is

asteroidal-C-free.

Lemma 2.5.4. Let C be a class of graphs that is closed under vertex

addition. Let G be a graph and let TG be coloured with respect to C. If

there are no red vertices in TG, then there exists a block B in G such that

no component of G−B is in C.

Proof. Note that if there exists a cut-vertex u in G such that each com-

ponent of G − {u} is not in C, then clearly, removal of any block that

contains u from G will result in a graph whose components are not in C
(recall that C is closed under vertex addition). Therefore, we shall assume

that for any cut-vertex u of G, there is some component of G−{u} that

is in C. Since {Ge : e incident on u} are the components of G− {u}, this

implies that in TG, every cut-vertex has at least one edge e incident on it

such that Ge ∈ C. In other words, every cut-vertex of TG has at least one

red edge incident on it. Since TG contains no red vertices, we can now

conclude that every cut-vertex in TG has exactly one red edge incident

on it.

For a cut-vertex u in G, let us define f(u) to be the only red edge inci-

dent on u in TG. Let v be the cut-vertex in G that minimizes |V (Gf(v))|.
Let f(v) = vB, where B is a block-vertex of TG. Recall that in TG, every

edge incident on v other than vB is a non-red edge. In other words,

none of the components of G− v other than Gf(v) belong to C. We now

claim that every edge in TG incident on B is red. Suppose that there is a

non-red edge wB in TG. Since w is a cut-vertex, there is a red edge f(w)

incident on w. Since wB is non-red, f(w) is different from wB. From

the structure of the block-tree, it is evident that V (Gf(w)) ⊂ V (Gf(v))

(w ∈ V (Gf(v) \V (Gf(w))). But this contradicts our choice of v as we now

have (|V (Gf(w))| < |V (Gf(v))|. Therefore, every edge that is incident on

B in TG is red.

For any block-vertex X in TG, we shall define FX = {wY : wX ∈ E(TG)
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and X 6= Y }. In other words, FX consists of exactly those edges of TG

that are not incident on X but are incident on some cut-vertex adjacent

to X. Note that {Ge : e ∈ FX} are exactly the components of G − X.

Since for the block-vertex B under consideration, we know that every

edge incident on it is red, we can infer that every edge in FB is non-red

(as every cut-vertex has exactly one red edge incident on it). This means

that each of {Ge : e ∈ FB} is a graph that is not in C; in other words,

no component of G − B belongs to C. We have thus found the required

block.

2.6 Trees and block graphs

A question asked in Babu et al. [12] is whether it can be determined in

polynomial-time if an input tree has a rectangle intersection representa-

tion in which each rectangle is a square of unit height and width. Instead

of restricting the rectangles to be unit squares, we study a different restric-

tion. In particular, we ask if, given a tree and an integer k, it can be de-

termined in polynomial-time whether the tree has a k-SRIG or k-ESRIG

representation. We show that the problem is polynomial-time solvable

if k ≤ 3. In fact, we show that we can determine in polynomial-time if

the input graph G is 2-ESRIG (equivalently 2-SRIG, by Theorem 2.3.2)

if G is guaranteed to be a block graph. We also show that it can be

determined in polynomial-time if an input tree is 3-ESRIG (equivalently

3-SRIG, by Theorem 2.3.2). Our algorithms depend on a forbidden struc-

ture characterization for block graphs that are 2-ESRIG and trees that

are 3-ESRIG. In fact, in both cases, the algorithm is a search for the

presence of these forbidden structures in the input graph, and therefore

it is a “certifying algorithm”, in the sense that the algorithm outputs a

representation whenever the answer is “Yes” and a forbidden structure

in the graph whenever the answer is “No”.

The forbidden structure characterizations of block graphs that are 2-
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ESRIG and trees that are 3-ESRIG are obtained as follows. In the pre-

vious section, we showed that a necessary condition for a graph to be a

2-ESRIG is that it has to be asteroidal-(non-interval)-free. We show in

this section that for block graphs, this necessary condition is also suffi-

cient. We later on show that for trees that are 3-ESRIG, the necessary

condition of being asteroidal-(non-2-ESRIG)-free is again a sufficient con-

dition. First, we need the following lemma.

Lemma 2.6.1. Let C be a class of graphs that is closed under vertex

addition. Let G be a block graph that is asteroidal-C-free and let TG be

coloured with respect to C. Then there exists a set S ⊆ V (G) such that

G[S] is an interval graph and no component of G− S is in C.

Proof. When TG contains at least one red vertex, let B be the set of block-

vertices of TG that have at least one red neighbour. If TG contains no red

vertices, then by Lemma 2.5.4, there is a block B in G whose removal

gives us components, none of which are in C. In this case, let B = {B}.
We shall let S be the set of vertices which are contained in some block

in B, or in other words, S =
⋃
B∈B B. By the above observation and

Lemma 2.5.2, we can assume from here onwards that no component of

G− S is in C. If there are no red vertices in TG, then G[S] is a complete

graph, and therefore an interval graph. To complete the proof, we only

need to show that if TG contains at least one red vertex, then G[S] is an

interval graph.

Suppose that TG contains at least one red vertex. Then from

Lemma 2.5.3, we know that the red vertices in TG form a path. Since

block graphs are chordal, by Theorem 1.1.1, we need to only show that

G[S] is AT-free in order to prove that G[S] is an interval graph. Sup-

pose for the sake of contradiction that there exists an asteroidal triple

{a, b, c} ⊆ S in G[S]. Since {a, b, c} has to be an independent set in G,

we know that there is no block that contains any two of them. We shall

say that a cut-vertex in G is red if that cut-vertex is coloured red in
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TG. Note that from the definition of S, every vertex in S is adjacent to

at least one red cut-vertex (since each vertex of S is in some block that

also contains a cut-vertex that is coloured red in TG, and each block is a

complete graph). Let a′, b′, c′ denote red cut-vertices that are adjacent to

a, b, c respectively. Suppose that a′ = b′ = x. Then, it is clear from the

structure of the block-tree that either every path between a and c con-

tains x or every path between b and c contains x. But this contradicts

the fact that a, b, c form an AT in G[S], since x is a neighbour of both a

and b. We can therefore assume that a′, b′, c′ are distinct red cut-vertices.

Since the red vertices form a path in TG, the vertices a′, b′, c′ must lie on

a path in TG. Let us assume without loss of generality that b′ lies on the

path in TG between a′ and c′. This means that every path between a′ and

c′ in G[S] contains b′. We now claim that every path in G[S] between a

and c goes through b′. Suppose for the sake of contradiction that there

exists a path P between a and c in G[S] that does not contain b′. Then

the path a′a ∪ P ∪ cc′ is a path between a′ and c′ in G[S] that does not

contain b′, contradicting the fact that every path in G[S] between a′ and

c′ contains b′. So, we have that every path between a and c in G[S] con-

tains b′, which is a neighbour of b. This contradicts the fact that a, b, c

forms an AT in G[S].

Theorem 2.6.1. A block graph G is 2-ESRIG if and only if G is

asteroidal-(non-interval)-free.

Proof. Let G be a block graph. We know by Theorem 2.5.2 that if G is

a 2-ESRIG then G is asteroidal-(non-interval)-free. Now we prove that if

G is asteroidal-(non-interval)-free then G is a 2-ESRIG.

By letting C be the class of non-interval graphs, we have by

Lemma 2.6.1 that there exists a set S ⊆ V (G) such that G[S] is an

interval graph and each component of G− S is also an interval graph.

Let R = {[cu, du]}u∈S be an interval representation of G[S] such that

all endpoints of intervals are distinct. Let ε ∈ R+ be such that ε <
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min{|cu − cv| : u, v ∈ S, u 6= v}. Also, let L,R ∈ R such that L <

minu∈S cu and R > maxu∈S du. For each vertex u ∈ S, define tu = cu−L
R−L .

Let H be the set of components of G − S. For a vertex u ∈ S, let

Hu = {H ∈ H : N(u) ∩ H 6= ∅}. From Lemma 2.5.2(a), it is clear that

for each component H ∈ H, there is a exactly one vertex in S that has

neighbours in H. Therefore, it follows that {Hu}u∈S is a partition of H
(recall that G is connected). Since each component of H is an interval

graph, and because disjoint unions of interval graphs are again interval

graphs, we know that for u ∈ S, the graph Iu formed by the disjoint

union of the components in Hu is an interval graph. It is easy to see

that {Iu}u∈S is a collection of neighbour-disjoint interval graphs. For

each u ∈ S, let Ru be an interval representation {[c′v, d′v]}v∈V (Iu) for the

interval graph Iu such that every interval in it is contained in the interval

[cu, cu + ε]. Note that for distinct a, b ∈ S, no interval of Ra intersects

with any interval of Rb. Also let b′v = 1 if v /∈ N(u) and b′v = tu if

v ∈ N(u). From here onwards, we shall assume that for every vertex

v ∈ V (G) \ S, the interval [c′v, d
′
v] and the value b′v are defined.

We shall now define a rectangle ru = [x−u , x
+
u ]× [y−u , y

+
u ] for each vertex

u ∈ V (G). For a vertex u ∈ S, we let x−u = cu, x
+
u = du, y

−
u = 0 and

y+
u = tu. For a vertex u ∈ V (G)\S, we let x−u = c′u, x

+
u = d′u, y

−
u = b′u and

y+
u = 1. We leave it to the reader to verify that the rectangles {ru}u∈V (G)

form a 2-exactly stabbed rectangle intersection representation of G.

Remarks. Let C be the class of non-interval graphs and G be a block

graph with n vertices and m edges. Since checking whether G is in C or

not is possible in O(n+m) time [60], we can infer that coloring the edges

of TG with respect to C is possible in O(n2 +nm) time. The construction

procedure described in the above proof can also be performed in O(n2 +

nm) time, thus giving a polynomial-time algorithm to recognize block

graphs that are 2-ESRIG.
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Theorem 2.6.2. A tree G is 3-ESRIG if and only if G is asteroidal-

(non-2-ESRIG)-free.

Proof. Let G be a tree. We know by Theorem 2.5.2 that if G is a 3-

ESRIG then G is asteroidal-(non-2-ESRIG)-free. Now we prove that if

G is asteroidal-(non-2-ESRIG)-free then G is a 3-ESRIG.

By letting C be the class of non-2-ESRIGs, we have by Lemma 2.6.1

that there exists a set S ⊆ V (G) such that G[S] is an interval graph and

each component of G− S is a 2-ESRIG.

Let R = {[cu, du]}u∈S be an interval representation of G[S] such that

all endpoints of intervals are distinct. Let ε ∈ R+ be such that ε <

min{|cu − cv| : u, v ∈ S, u 6= v}. Also, let L,R ∈ R such that L <

minu∈S cu and R > maxu∈S du. For each vertex u ∈ S, define tu = cu−L
R−L .

Let H be the set of components of G − S. For a vertex u ∈ S, let

Hu = {H ∈ H : N(u) ∩ H 6= ∅}. From Lemma 2.5.2(a), it is clear that

for each component H ∈ H, there is exactly one vertex in S that has

neighbours in H. Therefore, it follows that {Hu}u∈S is a partition of H
(recall that G is connected). Now let H be a component of Hu. Since G

is a tree, there is exactly one vertex w of H which is adjacent to u in G.

It is easy to see that there is a 2-exactly stabbed rectangle intersection

representation of H such that w is on the bottom stab line (take any

2-exactly stabbed rectangle intersection representation of H, and if the

rectangle corresponding to w does not intersect the bottom stab line,

then reflect the whole representation about the X-axis).

Since each component of H is a 2-ESRIG, and because disjoint unions

of 2-ESRIGs are again 2-ESRIG, we know that for u ∈ S, the graph Iu

formed by the disjoint union of the components in Hu is a 2-ESRIG. Let

Ru = {r′v}v∈Iu be a 2-exactly stabbed rectangle intersection representa-

tion of Iu with the stab lines y = 1 and y = 2 such that for any vertex

v of Iu, span(v) ⊂ [cu, cu + ε], and for each vertex w ∈ N(u) ∩ V (Iu)

the rectangle r′w intersects the stab line y = 1. Let I1
u be the subgraph

induced in Iu by the vertices that are on the stab line y = 1 in Ru. Sim-
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ilarly, I2
u be the subgraph induced in Iu by the vertices that are on the

stab line y = 2 in Ru. For any vertex v ∈ Iu, let c′v, d
′
v, t
′
v, b
′
v be such that

r′v = [c′v, d
′
v]× [b′v, t

′
v].

We shall now define a rectangle ru for each vertex u ∈ V (G) as follows.

For a vertex u ∈ S, we let ru = [cu, du] × [0, tu]. Consider a vertex v ∈
V (G)\S. Let u be the vertex in S such that v ∈ V (Iu). If v ∈ V (I2

u), then

we let rv = r′v. If v ∈ V (I1
u) and v /∈ N(u), then we let rv = [c′v, d

′
v]×[1, t′v].

If v ∈ V (I1
u) and v ∈ N(u), then we let rv = [c′v, d

′
v] × [tu, t

′
v]. We leave

it to the reader to verify that the rectangles {ru}u∈V (G) form a 3-exactly

stabbed rectangle intersection representation of G.

Remarks. Let C be the class of non-2-ESRIG graphs and T be a tree with

n vertices. Since checking whether T is in C or not is possible in O(n2)

time, we can infer that coloring the edges of block-tree of T with respect

to C is possible in O(n3) time. The construction procedure described

in the above proof can also be performed in O(n3) time, thus giving a

polynomial-time algorithm to recognize trees that are 3-ESRIG.

2.7 Constructing trees with high stab number

For a rooted tree T , let root(T ) be the root vertex of T . The following

observation is easy to see.

Observation 2.7.1. Let T be a tree and T ′ be a subtree of T such that

T − V (T ′) has only one component.

(i) For any edge e ∈ E(T ′), at least one component of T −e is a proper

subtree of T ′.

(ii) For any vertex v ∈ V (T ′), all but one component of T − {v} are

proper subtrees of T ′.

First we describe a recursive procedure to construct a rooted tree Gl for

all l ≥ 1. For l = 1, let G1 be the rooted tree containing only one vertex.
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For any integer l greater than 1, we construct Gl as follows. Let T1, T2 and

T3 be three rooted trees each isomorphic to Gl−1. Take a K1,3 with vertex

set {u, u1, u2, u3}, where u1, u2, u3 are the pendant vertices, and construct

Gl by adding edges between ui and root(Ti) for each i ∈ {1, 2, 3}. Also

let root(Gl) = u. For any rooted tree T with root r, we can define the

“ancestor” relation on V (T ) in the usual way: i.e., for u, v ∈ V (T ), u is

an ancestor of v if and only if the path in T between r and v contains u.

We prove the following lemma.

Lemma 2.7.1.

(i) For l > 1, Gl is not (l − 1)-SRIG.

(ii) For l ≥ 1, there is an l-exactly stabbed rectangle intersection repre-

sentation R of Gl such that for v, w ∈ V (Gl), span(v) ⊆ span(w)

if w is an ancestor of v and the vertices on the top stab line of R
are exactly the vertices in N [root(Gl)].

(iii) Let T and T ′ be two trees each isomorphic to Gl, for some l ≥ 1.

Let Fl be the tree obtained by taking a new vertex u and joining it

to the root vertices of T, T ′ using paths of length two.

(a) For l ≥ 1, there is an l-exactly stabbed rectangle intersection

representation R′ of Fl such that for v, w ∈ V (Fl), span(v) ⊆
span(w) if w is an ancestor of v in T or T ′, and all vertices

in the path between root(T ) and root(T ′) are on the top stab

line of R′.
(b) For l ≥ 2, there is an l-exactly stabbed rectangle intersection

representation R′′ of Fl such that for v, w ∈ V (Fl), span(v) ⊆
span(w) if w is an ancestor of v in T or T ′, and only the

vertices in N [root(T )]∪N [root(T ′)] are on the top stab line of

R′′.
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(iv) For l ≥ 2, there are no two vertex-disjoint subtrees in Gl such that

they are both non-(l − 1)-ESRIG.

(v) For l ≥ 1, estab(Gl) = stab(Gl) = log3(n+ 2), where n = |V (Gl)|.

Proof. We prove each statement separately by induction on l. When

l = 1, Gl consists of a single vertex and therefore all the statements are

true. Now we assume that the above statements are true for all integers

less than l.

Recall that Gl is obtained by taking three rooted trees T1, T2, T3, each

isomorphic to Gl−1, and then making each root adjacent to a unique

pendant vertex of a K1,3. Let u be the vertex of degree 3 and u1, u2, u3

be the pendant vertices of the K1,3. Also recall that root(Gl) = u.

To prove (i), note that as Ti is isomorphic to Gl−1 for each i ∈ {1, 2, 3},
we have by our induction hypothesis that Ti is not (l−2)-SRIG. Therefore,

T1, T2, T3 are asteroidal-(non-(l − 2)-SRIG) in Gl. Using Theorem 2.5.1,

we can conclude that Gl is not (l − 1)-SRIG.

To prove (ii), note that by our induction hypothesis, for each i ∈
{1, 2, 3}, Ti has an (l − 1)-exactly stabbed rectangle intersection repre-

sentation Ri such that for v, w ∈ V (Ti), span(v) ⊆ span(w) if w is an

ancestor of v and only the vertices in N [root(Ti)] are on the top stab

line of Ri. Since T1, T2, T3 are vertex disjoint, it is easy to see that there

is an (l − 1)-exactly stabbed rectangle intersection representation R of

the subgraph induced in Gl by ∪3
i=1V (Ti) such that only the vertices in

∪3
i=1N [root(Ti)] are on the top stab line of R: we can just place R1,

R2 and R3 side by side as shown in Figure 2.7.1(a). Now by introduc-

ing a new stab line ` above the top stab line of R and new rectangles

corresponding to the vertices in N [root(Gl)] = {u, u1, u2, u3} into the

representation such that they all intersect `, and for each i ∈ {1, 2, 3},
the rectangle corresponding to ui intersects the rectangle corresponding

to root(Ti) as shown in Figure 2.7.1(a), we can get the desired l-exactly
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`
u u1 u2 u3

v1 v2 v3

R1 R2 R3

...

(a)

...

u
root(T ) root(T ′)

(b)

...

u

root(T ) root(T ′)

(c)

Figure 2.7.1: Construction of Gl and Fl. The shaded region denotes a
collection of rectangles. In (a), for i ∈ {1, 2, 3}, vi is the vertex root(Ti).
Figures (b) and (c) show different l-exactly stabbed rectangle inter-
section representations of Fl as described in Lemma 2.7.1(iii)(a) and
Lemma 2.7.1(iii)(b).
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stabbed rectangle intersection representation of Gl.

Now we prove (iii)(a) and (iii)(b). Since T and T ′ are both isomorphic

to Gl and vertex disjoint, we can infer using (ii) that there is an l-exactly

stabbed rectangle intersection representation R of Fl[V (T )∪V (T ′)] such

that for v, w ∈ V (Fl), span(v) ⊆ span(w) if w is an ancestor of v in T or

T ′, and only the vertices in N [root(T )]∪N [root(T ′)] are on the top stab

line of R (we can obtain R by placing the representations of T and T ′ as

given by (ii) side by side as shown in Figure 2.7.1(b)). Let P be the path

that joins root(T ) and root(T ′) in Fl. As shown in Figure 2.7.1(b), we can

represent P such that all the vertices in P are on the top stab line of R.

This proves (iii)(a). Similarly, if l ≥ 2, then as shown in Figure 2.7.1(c),

we can represent P such that only the vertices in N [root(T )]∪N [root(T ′)]

are on the top stab line of R. This proves (iii)(b).

Now we prove (iv). Assume for the sake of contradiction that X1, X2

are two vertex-disjoint subtrees in Gl such that they are both non-(l−1)-

ESRIG. Since Gl is connected, there exists an edge e in Gl such that if X ′1

and X ′2 are the two components in Gl−e, then for each i ∈ {1, 2}, Xi is a

subtree of X ′i. This implies that both X ′1 and X ′2 are non-(l− 1)-ESRIG.

Suppose that e ∈ E(Ti) for some i ∈ {1, 2, 3}. Note that Gl − V (Ti)

has only one component. Therefore, using Observation 2.7.1(i) we can

infer that there exists X ∈ {X ′1, X ′2} such that X is a proper subtree of

Ti. But as Ti, being isomorphic to Gl−1, is (l − 1)-ESRIG by (ii), this

implies that X is (l − 1)-ESRIG. This contradicts the fact that both X ′1

and X ′2 are non-(l− 1)-ESRIG. Therefore, we can assume without loss of

generality that e is either uu1 or the edge between u1 and root(T1). If e

is the edge between u1 and root(T1), then one of the components of T −e
is T1, which is (l − 1)-ESRIG by (ii), contradicting the fact that both

components of T −e are non-(l−1)-ESRIG. If e is the edge uu1, then one

of the components of T − e is isomorphic to Fl−1, and therefore by (iii),

is (l − 1)-ESRIG. This again contradicts the fact that both components

of T − e are non-(l − 1)-ESRIG.
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To prove (v), we can solve the recurrence |V (Gl)| = 3|V (Gl−1)|+ 4 to

obtain n = |V (Gl)| = 3l − 2. Now, using (i) and (ii), we can conclude

that estab(Gl) = stab(Gl) = log3(n+ 2).

From Theorem 2.4.4, we have that for any tree T on n vertices with

n ≥ 3, estab(T ) ≤ dlog(n − 1)e. Also, using Theorem 2.4.4 and

Lemma 2.7.1(v), we have the following corollary.

Corollary 3. estab(Trees, n) = Θ(log n), stab(Trees, n) = Θ(log n),

estab(Block Graphs, n) = Θ(log n), and stab(Block Graphs, n) =

Θ(log n).

Although the stab number and exact stab number were equal for the

trees that we constructed in this section, we shall show in Theorem 2.9.1

there are trees for which these parameters differ. The graph Gl and the

observations in Lemma 2.7.1 will be used frequently in the remainder of

the chapter.

2.8 Absence of asteroidal subgraphs is not suf-

ficient

We showed in Theorem 2.5.1 that being asteroidal-(non-(k − 1)-SRIG)-

free is a necessary condition for a graph to be k-SRIG. Theorem 2.6.1

showed that this necessary condition is also sufficient for block graphs

when k ≤ 2 and Theorem 2.6.2 demonstrated that this necessary condi-

tion is sufficient for trees when k ≤ 3. In this section, we shall show that

this necessary condition is not sufficient for block graphs for any k ≥ 3

and it is not sufficient for trees for any k ≥ 4. In particular, we shall

prove the following two theorems.

Theorem 2.8.1. There exists a block graph that is asteroidal-(non-2-

SRIG)-free, but is not 3-SRIG.
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Note that by Theorem 2.3.2, the above theorem also means that there

exists a block graph that is asteroidal-(non-2-ESRIG)-free, but is not

3-ESRIG.

Theorem 2.8.2. For each integer k ≥ 4, there exists a tree T that is

asteroidal-(non-(k − 1)-ESRIG)-free, but is not k-SRIG.

It is easy to see that Theorem 2.8.2 directly gives the following two

corollaries, which tell us that the necessary conditions derived in The-

orem 2.5.1 and Theorem 2.5.2 for a tree to be a k-SRIG and k-ESRIG

respectively, are not sufficient for any k ≥ 4.

Corollary 4. For each integer k ≥ 4, there exists a tree T that is

asteroidal-(non-(k − 1)-SRIG)-free, but is not k-SRIG.

Corollary 5. For each integer k ≥ 4, there exists a tree T that is

asteroidal-(non-(k − 1)-ESRIG)-free, but is not k-ESRIG.

In order to prove these theorems, we develop some tools to study

k-stabbed rectangle intersection representations using special kinds of

curves in the representation that are derived from induced paths in the

graph.

Consider a k-stabbed rectangle intersection representationR of a graph

G. In this representation, we say that a curve is rectilinear if it consists

of vertical and horizontal line segments and each horizontal line segment

in it lies on a stab line. Given an induced path P = u1u2 . . . us in G and

two distinct points p ∈ ru1 and p′ ∈ rus such that p, p′ lie on stab lines,

a rectilinear curve through P from p to p′ is a simple rectilinear curve p

that starts at p and ends at p′, where p ⊆ ⋃s
i=1 rui and p ∩ rui is arc-

connected (and nonempty) for each i ∈ {1, 2, . . . , s}. Note that such a

curve always exists and that for each i ∈ {1, 2, . . . , s}, the curve contains

some point in rui that is on a stab line.

Given a set X of consecutive stab lines y = a1, y = a2, . . ., y = at, such

that a1 < a2 < · · · < at, we say that y = a1 is the bottom stab line in X
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and y = at is the top stab line in X. Further, we say that a connected

induced subgraph H of G is X-spanning if there is some vertex in H on

each stab line in X. An induced path in G is said to be an X-spanning

path if its starting and ending vertices are on the top and bottom stab

lines of X respectively. Note that if a subgraph H of G is X-spanning,

then there is an X-spanning path in H (to see this, consider the shortest

path between two vertices u and v in H such that u is on the top stab

line in X and v is on the bottom stab line in X).

In the following, we use the term “region” to denote an arc-connected

region of the plane that is bounded by a closed rectilinear curve which

is the union of four simple rectilinear curves that satisfy some special

properties (we assume that a region does not contain the points on its

boundary). Suppose t, l, b, and r are four simple rectilinear curves such

that l∩ r = ∅, t∩b = ∅, and for each (x,y) ∈ {(t, l), (l,b), (b, r), (r, t)},
the curves x and y have exactly one point in common which is also an end

point of both of them. Then, the region R = (t, l,b, r) is the bounded

arc-connected component of R2 \ (t ∪ l ∪ b ∪ r). The closed rectilinear

curve t ∪ l ∪ b ∪ r is called the “boundary” of R. For a region R, we let

LR(R) denote the set of stab lines of R that intersect R. Also, let GR

denote the subgraph induced in G by the vertices whose rectangles lie

completely inside R.

Observation 2.8.1. Let `t, `b be the stab lines just above and just below

the top and bottom stab lines in LR(R) respectively. Then, no point on

the boundary of R lies above `t or below `b.

Proof. Suppose that the boundary of R contains a point p that is above

`t. Let p′ be an arbitrary point in R that is on the top stab line in LR(R).

It is easy to see that there exists a simple curve from p′ to p all of whose

points except p belong to R. Since p′ is below `t and p above it, there

must be a point on this curve that lies on `t. But this would mean that

R intersects `t, contradicting the fact that `t /∈ LR(R). Using similar
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arguments, we can prove that no point on the boundary of R lies below

`b.

Definition 2.8.1. A region R = (t, l,b, r) is said to be “good” if it has

the following properties:

(i) the parts of l and r that are above the top stab line in LR(R) and

below the bottom stab line in LR(R) consist of just a vertical segment

each, or in other words, every horizontal segment of l and r lies on

a stab line in LR(R),

(ii) no point of t lies below the bottom stab line of LR(R), and

(iii) no point of b lies above the top stab line of LR(R).

For a good region R = (t, l,b, r), we let top(R) = t and bottom(R) =

b.

Let R = (t, l,b, r) be a good region with |LR(R)| ≥ 1. Let P1 and P2

be two neighbour-disjoint LR(R)-spanning paths in GR. For i ∈ {1, 2},
let ui, vi be the endvertices of Pi that are on the top and bottom stab

lines in LR(R) respectively. For i ∈ {1, 2}, let pi be a rectilinear curve

that starts at a point (xi, yi) ∈ rui on the top stab line in LR(R) and

ends at a point (x′i, y
′
i) ∈ rvi on the bottom stab line in LR(R), with the

following additional properties:

(i) The only point in pi that is in rui and is also on the top stab line

in LR(R) is (xi, yi), and

(ii) The only point in pi that is in rvi and is also on the bottom stab

line in LR(R) is (x′i, y
′
i).

It is not difficult to see that the curves p1,p2 always exist. (Take any

rectilinear curve q through Pi between some point on the top stab line in

rui and some point on the bottom stab line in rvi . Let (xi, yi) be the last
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point in q that is both in rui and is on the top stab line and let (x′i, y
′
i)

be the first point in q that is both in rvi and is on the bottom stab line.

Then the subcurve of q between (xi, yi) and (x′i, y
′
i) can be taken as pi.)

Suppose that there is a path in GR between a vertex of P1 and a vertex

of P2. Then, let P be the induced path in GR between a vertex w1 in P1

and a vertex w2 in P2 such that all other vertices of P belong to neither P1

nor P2. Let p1, p2 be points on stab lines where for i ∈ {1, 2}, pi ∈ pi∩rwi ,
such that there exists a rectilinear curve p through P from p1 to p2, whose

interior points belong to neither p1 nor p2 (note that p1, p2 and p always

exist — take arbitrary points p, p′ on stab lines such that p ∈ p1 ∩ rw1 ,

p′ ∈ p2 ∩ rw2 and consider the rectilinear curve p′ through P between p

and p′; p1, p2 can be chosen to be the closest pair of points on p′ such that

p1 ∈ p1, p2 ∈ p2, and the part of p′ between p1 and p2 can be chosen as

p). Please refer to Figure 2.8.1(a) for an example showing the different

curves in R. For i ∈ {1, 2}, let si be the shortest vertical line segment

with its bottom endpoint being (xi, yi) and top endpoint being a point on

the boundary of R. Similarly, for i ∈ {1, 2}, let s′i be the shortest vertical

line segment with its top endpoint being (x′i, y
′
i) and bottom endpoint

being a point on the boundary of R (refer Figure 2.8.1(b)).

Observation 2.8.2. For each i ∈ {1, 2}, the top endpoint of si lies on

the stab line just above the top stab line in LR(R) and on a horizontal

segment of t and the bottom endpoint of s′i lies on the stab line just below

the bottom stab line in LR(R) and on a horizontal segment of b.

Proof. For i ∈ {1, 2}, we know that the top endpoint of si lies on the

boundary of R, and hence on a horizontal segment of the boundary of R.

This implies that the top endpoint of si lies on a stab line. Also, note

that the bottom endpoint of si is a point in R that is on the top stab line

in LR(R). This means that the top endpoint of si lies above the top stab

line in LR(R). Since the top endpoint of si lies on the boundary of R,

we immediately have from Observation 2.8.1 that it lies on the stab line
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Figure 2.8.1: An example of a good region R = (t, l,b, r) (whose
boundary is shown using thick dashed lines) containing the rectangles
corresponding to minimal spanning paths P1 and P2 and a path P con-
necting them. (a) shows the rectilinear curves p1, p2 and p through
these paths using thick solid lines. (b) shows the partition of R into the
four regions R1, R2, Rt and Rb.

just above the top stab line in LR(R). Also, since it lies on a horizontal

segment of the boundary of R, it lies on some horizontal segment that

belongs to one of the curves t, l,b, r. Since R is good, we know that no

horizontal segment of l, r or b lies above the top stab line in LR(R). This

means that the top endpoint of si lies on a horizontal segment of t. Using

similar reasoning, it can be seen that for i ∈ {1, 2}, the bottom endpoint

of s′i lies on the stab line just below the bottom stab line in LR(R) and

on a horizontal segment of b.

Let t′ ⊆ t be the portion of the curve t that starts at the top endpoint

of s1 and ends at the top endpoint of s2. Similarly, let b′ ⊆ b be the

portion of the curve b that starts at the bottom endpoint of s′1 and ends

at the bottom endpoint of s′2.

For i ∈ {1, 2}, let the curve pt
i be the connected portion of pi that

starts at (xi, yi) and ends at the common point of pi and p (denoted as

pi previously) and let the curve pb
i be the connected portion of pi that
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starts at the common point of pi and p and ends at (x′i, y
′
i).

Let R1, R2, Rt, Rb be the regions into which the region R gets split by

the union of the curves p1,p2,p, s1, s′1, s2, s
′
2, where Ri, for i ∈ {1, 2}, is

the region whose boundary contains pi, Rt = (t′, s1 ∪pt
1,p,p

t
2 ∪ s2), and

Rb = (p,pb
1 ∪ s′1,b

′, s′2 ∪ pb
2) (please refer to Figure 2.8.1(b)).

Observation 2.8.3. From the definition of Rt and Rb, we have:

(i) top(Rt) ⊆ top(R) and bottom(Rb) ⊆ bottom(R).

(ii) bottom(Rt) = top(Rb).

(iii) If x is a vertex in P , then rx intersects bottom(Rt) (= top(Rb)).

(iv) Let x ∈ V (G) such that rx intersects bottom(Rt) (= top(Rb)).

Then x has a neighbour in P .

For the rest of this section, for a good region R and paths P1, P2, P

such that:

• P1 and P2 are two neighbour-disjoint LR(R)-spanning paths in GR,

and

• P is an induced path in GR between a vertex in P1 and a vertex in

P2 such that all vertices of P other than its end vertices belong to

neither P1 nor P2 (note that such a path will exist if there is some

path in GR between a vertex of P1 and a vertex of P2),

we shall denote by ∆(R, R, P1, P2, P ) the ordered pair (Rt, Rb), where

the regions Rt and Rb are obtained using the procedure described above.

We shall now prove some observations about the regions Rt and Rb.

Lemma 2.8.1.

(a) The curve t′ (resp. b′) does not intersect the bottom (resp. top)

stab line in LR(R).
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(b) Rt does not intersect the bottom stab line in LR(R) and Rb does

not intersect the top stab line in LR(R).

Proof. Let us first prove (a). We shall only show that the curve t′ does

not intersect the bottom stab line in LR(R) as the other case is similar.

Let the rectilinear curve q be pt
1 ∪ p ∪ pt

2. Note that q is a simple

rectilinear curve. Let ` be the stab line just above the top stab line of

LR(R). From Observation 2.8.2, we have that the top endpoints of s1

and s2 lie on `. Let the horizontal line segment (that lies entirely on `)

between these two points be denoted by s. Let R′ be the region bounded

by s1 ∪ q ∪ s2 ∪ s. From Observation 2.8.1, it is then clear that t′ lies

entirely in R′ ∪ s (recall that R′ consists only of the points in the interior

of the region bounded by s1∪q∪ s2∪ s). Since the points in q all belong

to rectilinear curves through paths in GR, every horizontal segment of q

is on a stab line in LR(R). Since the endpoints of q lie on the top stab

line in LR(R), and q is a simple rectilinear curve, it follows that every

point in q is on or above the bottom stab line in LR(R). As the points

in s1 ∪ s2 ∪ s lie on or above the top stab line in LR(R), this means that

all the points on the boundary of R′ lie on or above the bottom stab line

in LR(R), implying that R′ does not intersect the bottom stab line in

LR(R). As s lies on the stab line just above the top stab line in LR(R),

we now have that R′∪s does not intersect the bottom stab line in LR(R).

From our earlier observation that t′ lies entirely in R′ ∪ s, we now have

that t′ does not intersect the bottom stab line in LR(R).

To prove (b), we shall only prove that Rt does not intersect the bottom

stab line in LR(R) as the case for Rb involves similar arguments. Note

that the boundary of Rt is t′ ∪ s1 ∪ q ∪ s2. From the arguments in the

previous paragraph, it is easy to see that all the points in s1 ∪ q ∪ s2 lie

on or above the bottom stab line in LR(R). Combining this with (a), we

now have that all the points on the boundary of Rt lie on or above the

bottom stab line in LR(R). Hence we can conclude that the bottom stab

line in LR(R) does not intersect Rt.
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An LR(R)-spanning path P is said to be a minimal LR(R)-spanning

path if there is no LR(R)-spanning path P ′ such that V (P ′) ⊂ V (P ).

Note that the existence of an LR(R)-spanning path in a graph implies

the existence of a minimal LR(R)-spanning path in the graph.

Lemma 2.8.2. Suppose that P1 and P2 are minimal LR(R)-spanning

paths. Let R′ ∈ {Rt, Rb} such that |LR(R′)| ≥ |LR(R)| − 1. Then R′ is

good.

Proof. We shall prove this only for the case when R′ = Rt as the other

case is similar. As |LR(Rt)| ≥ |LR(R)| − 1, and by Lemma 2.8.1(b), Rt

does not intersect the bottom stab line, we know that LR(Rt) consists of

all the stab lines in LR(R) other than the bottom stab line in LR(R).

Recall that Rt = (t′, s1∪pt
1,p,p

t
2∪ s2). Since the paths P1 and P2 are

minimal, we know that for i ∈ {1, 2}, ui is the only vertex on Pi that is

on the top stab line in LR(R) and vi is the only vertex on Pi that is on

the bottom stab line in LR(R). Therefore, from the definition of curves

p1 and p2, we have that for i ∈ {1, 2}, the only points of pi that lie on

the top and bottom stab lines in LR(R) are the endpoints of pi, which

further implies that pi does not contain any horizontal segment on the

top or bottom stab lines in LR(R). It follows that for i ∈ {1, 2}, pt
i , and

therefore si∪pt
i , also does not contain any horizontal segment on the top

or bottom stab lines in LR(R). As LR(Rt) consists of all the stab lines in

LR(R) other than the bottom stab line in LR(R), we have that s1 ∪ pt
1

and s2∪pt
2 do not contain any horizontal segment that lies above the top

stab line in LR(Rt) or below the bottom stab line in LR(Rt). Therefore,

Rt satisfies property (i) of Definition 2.8.1. From Lemma 2.8.1(a), we

have that t′ does not intersect the bottom stab line in LR(R). Since

the endpoints of t′ lie above the top stab line in LR(R), we can then

conclude using the definition of rectilinear curves that no point of t′ lies

below the bottom stab line of LR(Rt). Thus, Rt satisfies property (ii) of

Definition 2.8.1. Since the points in p all belong to rectangles contained
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in R and p is a simple rectilinear curve, we know that all of them are on

or below the top stab line in LR(R) and hence on or below the top stab

line in LR(Rt). Therefore, Rt satisfies property (iii) of Definition 2.8.1 as

well. This completes the proof.

Observation 2.8.4. Let v ∈ V (G). For i ∈ {1, 2}, if rv ∩ t′ = ∅ (resp.

rv ∩ b′ = ∅) and rv intersects si (resp. s′i), then rv contains the point

(xi, yi) (resp. (x′i, y
′
i)).

Proof. Suppose that rv ∩ t′ = ∅, but rv intersects si. As the top endpoint

of si is contained in t′, we can infer that rv does not contain the top

endpoint of si. If rv also does not contain the bottom endpoint of si, then

there is no stab line that intersects rv, as the top and bottom endpoints

of si are on consecutive stab lines. We can therefore conclude that the

bottom endpoint of si, which is (xi, yi), is contained in rv. The arguments

for the other case are similar and are therefore omitted.

Lemma 2.8.3. Let v ∈ V (G) such that rv intersects the boundary of

Rt (resp. Rb). Then either rv intersects t′ = top(Rt) (resp. b′ =

bottom(Rb)) or v has a neighbour on at least one of the paths P1, P2,

or P .

Proof. We shall prove this lemma only for Rt as the arguments for Rb are

similar. Suppose there exists a vertex v ∈ V (G) such that rv intersects

the boundary of Rt, but rv does not intersect t′ and v does not have a

neighbour on any of the paths P1, P2, or P . Then rv does not intersect

any of the curves pt
1, p, or pt

2. From this, it follows that rv does not

contain the points (x1, y1) or (x2, y2). By Observation 2.8.4, we now

have that rv does not intersect s1 or s2. Since the boundary of Rt is

t′ ∪ s1 ∪ pt
1 ∪ p ∪ pt

2 ∪ s2, this means that rv does not intersect the

boundary of Rt, which is a contradiction.

Lemma 2.8.4. Let v ∈ V (GR) such that P misses v and there is a path

in GR from v to a vertex in P that misses both P1 and P2. Then rv is

contained in Rt or Rb.
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Proof. As v is not adjacent to any vertex in P , P1 or P2, the rectangle rv

does not intersect p, p1 or p2. Also, as v ∈ V (GR), rv does not intersect

t′ or b′. Then, by Observation 2.8.4, we can further infer that rv does not

intersect s1, s2, s′1 or s′2. This means that rv is contained in one of the

regions R1, R2, Rt or Rb. Now suppose for the sake of contradiction that

rv is contained in R1. We know from the statement of the lemma that

there is at least one path in GR from v to some vertex in P that misses

both P1 and P2. Let Q be such a path of minimum length and let u be

the endpoint of Q other than v. It is clear that V (P )∩ V (Q) = {u}. Let

p′ be a point in ru ∩ p that is on a stab line (recall from the definition of

rectilinear curves through paths that such a point exists). As u has no

neighbour on P1 or P2, it can be seen that p′ is not an endpoint of p, i.e.,

p′ is an interior point of p. Now consider the rectilinear path through

Q from some point in rv (that is on a stab line) to p′. As the point p′

is not inside or on the boundary of R1, this rectilinear curve must cross

the boundary of R1 at some point p′′. It is clear that there is a vertex

x in Q such that p′′ ∈ rx. Since rx is contained in R, we can infer that

p′′ is on s1 ∪ p1 ∪ s′1 and also that rx does not intersect t′ or b′. If p′′ is

on s1 or s′1, we have by Observation 2.8.4 that rx intersects p1. So we

can conclude that in any case, rx intersects p1. Since from the definition

of p1, every point of p1 belongs to the rectangle corresponding to some

vertex of P1, this implies that x is adjacent to some vertex of P1. This

contradicts the fact that Q misses P1. We can thus conclude that rv is

not contained in R1. Using similar arguments, we can also infer that rv

is not contained in R2. This completes the proof.

Lemma 2.8.5. Let v, w ∈ V (GR) such that rv is contained in R′ ∈
{Rt, Rb} and there is a path in GR between v and w that misses P1, P2

and P . Then rw is contained in R′.

Proof. We shall prove the statement of the lemma only for the case R′ =

Rt as the proof for the case R′ = Rb is similar. Let Q be the path
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between v and w in GR that misses P1, P2 and P . Let x be any vertex

on Q. Clearly, x has no neighbour on P1, P2 or P . As x ∈ V (GR), the

rectangle rx is contained in R, implying that rx does not intersect the

boundary of R. As we have top(Rt) ⊆ top(R) by Observation 2.8.3(i),

this means that rx does not intersect top(Rt). By Lemma 2.8.3, we

now have that rx does not intersect the boundary of Rt. Therefore, no

rectangle corresponding to a vertex in Q can intersect the boundary of Rt.

Since rv is contained in Rt, this means that the rectangle corresponding

to each vertex of Q, and hence rw, is contained in Rt.

We shall use the technical details about good regions and rectilinear

curves only for the proof of Theorem 2.8.2. We now give a lemma that

shall be sufficient for most of the other proofs. Given a graph G and a

representation R of G, we shall define LR(H), for any connected induced

subgraph H of G, to be the set of stab lines of R that intersect the

rectangle corresponding to some vertex in V (H). Note that LR(H) will

contain a consecutive set of stab lines of R.

Lemma 2.8.6. Let G be a connected k-SRIG and R a k-stabbed rect-

angle intersection representation of it. Let H1 and H2 be two neighbour-

disjoint connected induced subgraphs of G such that LR(H1) = LR(H2) =

LR(G) = k. Let P be an induced path in G between some vertex in

V (H1) and some vertex in V (H2) such that no internal vertex of P is in

V (H1) or V (H2). Let H be a connected induced subgraph of G that is

neighbour-disjoint from H1, H2 and P such that there is a vertex in H

from which there is a path to a vertex of P that misses both H1 and H2.

Then, LR(H) ⊂ LR(G).

Proof. We shall augmentR to a new representationR′ by adding two new

stab lines, one above the top stab line and the other below the bottom

stab line of R. Notice that for any connected induced subgraph G′ of

G, we have LR′(G′) = LR(G′). Let A be a good region that contains all

the rectangles of R′, i.e., GA = G (note that such a region exists; we can
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consider a rectangle with top and bottom edges on the top and bottom

stab lines such that it contains all the rectangles of R′). As the only

two stab lines that are not intersected by any rectangle in R′ are the top

and bottom stab lines (recall that LR(G) contains all the stab lines of

R), it follows that LR′(A) = LR′(G). It is clear that for any induced

subgraph G′ of G, LR′(G′) = LR(G′). Therefore, we have LR′(H1) =

LR′(H2) = LR′(G), which implies that there are LR′(A)-spanning paths

in each of them. Let P1 and P2 be minimal LR′(A)-spanning paths in H1

and H2 respectively. As H1 and H2 are neighbour-disjoint, P1 and P2 are

neighbour-disjoint. It is not hard to see that there exists an induced path

P ′ in G[V (H1)∪ V (P )∪ V (H2)] that contains P as a subpath, such that

P ′ connects some vertex of P1 to some vertex of P2 and no internal vertex

of P ′ belongs to either P1 or P2. Let (At, Ab) = ∆(R′, A, P1, P2, P
′).

We know that there exists a vertex, say v, in H such that there is a

path from v to a vertex of P that misses both H1 and H2. Clearly, this is

also a path from v to a vertex in P ′ that misses both P1 and P2. As H is

neighbour-disjoint from P , we know that P misses v. By Lemma 2.8.4,

we know that rv is contained in At or Ab. Let us assume without loss

of generality that rv is contained in At. Since H is a connected induced

subgraph of G that is neighbour-disjoint from H1, H2 and P , we know

that there is a path from v to each vertex of H that misses H1, H2 and

P . This means that there is a path from v to each vertex of H that

misses P1, P2 and P ′. Now, we can use Lemma 2.8.5 to conclude that

the rectangles corresponding to the vertices of H are all contained in At.

Since by Lemma 2.8.1(b), we know that LR′(At) ⊂ LR′(A), we can now

conclude that LR′(H) ⊂ LR′(G), and therefore LR(H) ⊂ LR(G).

Proof of Theorem 2.8.1.

Let T be the block graph obtained by taking a copy of the tree G2

(defined in Section 2.7) and then introducing a true twin for one of the

leaves. Let w,w′ be the two true twins in T , v be their common neigh-
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Figure 2.8.2: Construction of block graph for Proof of Theorem 2.8.1.
(a) Construction of T . (b) Construction of H. T1 and T2 are isomor-
phic to G2. (c) Construction of G. T3 and T4 are isomorphic to G3 and
H is the block graph shown in (b).

bour and u the degree 3 vertex adjacent to v. See Figure 2.8.2(a) for a

drawing of T . Notice that the graph G2 is non-interval (folklore, or by

Lemma 2.7.1(i)).

Let T1 and T2 be trees each isomorphic to G2. Let H be the graph

obtained by taking the disjoint union of T1, T2 and T and then doing the

following: introduce a new vertex a, connect a to a leaf of T1 and to a

leaf of T2 using paths of length 2 and then make a adjacent to w (see

Figure 2.8.2(b)).

Claim 1. H is non-(2-SRIG).

Proof. Note that T −{w} is isomorphic to G2, and hence is non-interval.

As T1, T2, T −{w} are asteroidal-(non-interval) in H, by Theorem 2.5.1,

we have that H is non-(2-SRIG).

It is easy to see that H −{w′} is asteroidal-(non-interval)-free. Hence,

by Theorem 2.6.1, we have that H − {w′} is 2-SRIG.
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Claim 2. The vertices w and v do not have a common stab in any 2-

stabbed rectangle intersection representation of H − {w′}.
Proof. Let H ′ = H−{w′}. Let R be any 2-stabbed rectangle intersection

representation of H ′. Since T1 and T2 are neighbour-disjoint connected

induced subgraphs of H ′ that are non-interval, we have that |LR(T1)| =
|LR(T2)| = 2. Let P be the (induced) path between T1 and T2 in H ′.

Notice that T − {w,w′} is a connected induced subgraph of H ′ that is

neighbour-disjoint from T1, T2 and P . Moreover, there is a path from the

vertex v of T−{w,w′} to the vertex a of P that misses T1 and T2. We can

now use Lemma 2.8.6 to conclude that |LR(T−{w,w′})| = 1. Let LR(T−
{w,w′}) = {`}. It is clear that for each vertex of T −{w,w′}, and hence

also for v, the only stab line that intersects the rectangle corresponding

to it is `. If rw also intersects `, then the collection {` ∩ rx}x∈V (T−{w′})

would form an interval representation of G2, which contradicts the fact

that G2 is non-interval. This completes the proof of the claim.

We shall now construct the desired block graph G that satisfies the

requirements in the statement of Theorem 2.8.1. Let T3 and T4 be trees

that are isomorphic to G3 (defined in Section 2.7). Let G′ be the graph

formed by taking the disjoint union of T3 and T4 and then doing the

following: add a new vertex b and connect it to a vertex of T3 using a

path of length 2 and a vertex of T4 using a path of length 2. The graph G

is constructed by taking the disjoint union of H and G′ and then adding

an edge between b and w′ (see Figure 2.8.2(c) for a schematic diagram of

G).

Claim 3. G is not 3-SRIG.

Proof. Suppose for the sake of contradiction that G is 3-SRIG. Let R be

a 3-stabbed rectangle intersection representation of G. Since T3 and T4

are neighbour-disjoint connected induced subgraphs of G that are non-(2-

SRIG) (recall that T3 and T4 are isomorphic to G3 and that G3 is non-(2-

SRIG) by Lemma 2.7.1(i)), we have that |LR(T3)| = |LR(T4)| = 3. Let P
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be the path between T3 and T4 in G. Notice that H−{w′} is a connected

induced subgraph of G that is neighbour-disjoint from T3, T4 and P .

Moreover, there is a path from the vertex w of H − {w′} to the vertex b

of P that misses T3 and T4. We can now use Lemma 2.8.6 to conclude that

|LR(H−{w′})| = 2. This means that in R, the rectangles corresponding

to H − {w′} form a 2-stabbed rectangle intersection representation of

H − {w′}. Then, by Claim 2, we know that neither of the two stab lines

in LR(H − {w′}) intersects both rw and rv. Since w′ is adjacent to both

w and v, this implies that rw′ intersects at least one of the two stab lines

in LR(H − {w′}). But then, the rectangles corresponding to the vertices

of H, together with the stab lines in LR(H − {w′}), form a 2-stabbed

rectangle intersection representation of H. This contradicts Claim 1.

To complete the proof of the theorem, we only need to show that G

is asteroidal-(non-2-SRIG)-free. Suppose for the sake of contradiction

that there exist induced subgraphs X1, X2, X3 that are asteroidal-(non-

2-SRIG) in G. First we need the following claim, whose proof is left to

the reader.

Claim. In any block graph that contains three induced subgraphs that are

asteroidal-C in it, for some graph class C, there exists either a cutvertex

that has no neighbour in each of the three subgraphs, or a triangle, whose

removal results in a graph in which each of the three subgraphs is in a

different component.

From the above claim, we have that either there exists a vertex x ∈
V (G) such that G− {x} has three components X ′1, X

′
2, X

′
3 such that for

each i ∈ {1, 2, 3}, V (Xi) ⊆ V (X ′i)\N [x], or X1, X2, X3 are each contained

in a different component of G − {w,w′, v} (since the only triangle in G

is formed by w, w′ and v). Let us first suppose that X1, X2, X3 are

each contained in a different component of the three components in G−
{w,w′, v}. It is easy to see that the component of G − {w,w′, v} that

contains a neighbour of v is a path and is therefore 1-SRIG, contradicting
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the fact that it contains one of the non-(2-SRIG) graphs X1, X2, X3. So

we can assume that there exists a vertex x ∈ V (G) such that G− x has

three components X ′1, X
′
2, X

′
3 such that for each i ∈ {1, 2, 3}, V (Xi) ⊆

V (X ′i)\N [x]. Note that since G−{x} contains at least three components,

degree of x is at least 3 and x /∈ {w,w′, v}.
Let us first suppose that x ∈ V (G′). If x = b, one of the three com-

ponents of G − {x}, say X ′1, is H. But now, V (X ′1) \N [x] = H − {w′},
which is 2-SRIG by our earlier observation. This contradicts the fact that

V (X1) ⊆ V (X ′1) \N [x] as X1 is non-(2-SRIG). If x 6= b, then x ∈ V (T3)

or x ∈ V (T4). Suppose that x ∈ V (T3). As G′ is a tree, we know that

G′ − {x} contains at least three components. Also, as G′ − V (T3) has

only one component, we can use Observation 2.7.1(ii) to conclude that

all components of G′ − {x} except the component Y that contains b are

proper subtrees of T3. Since the only edge between V (G) \ V (G′) and

V (G′) is w′b, we can see that every component of G′ − {x} other than

Y is also a component of G − {x}. This means that at least two com-

ponents, say X ′1, X
′
2, of G− {x} are also components of G′ − {x}. Since

V (X1) ⊆ V (X ′1) and V (X2) ⊆ V (X ′2), we have that X ′1 and X ′2 are non-

(2-SRIG) neighbour-disjoint induced subgraphs of T3. As T3 is isomorphic

to G3, this is a contradiction to Lemma 2.7.1(iv). For the same reason,

we can also conclude that x /∈ V (T4). This means that x ∈ V (H).

But if x ∈ V (H), then since x /∈ {w,w′, v}, it is clear from the con-

struction of G that at least one of the components, say X ′1, of G − {x}
is an induced subgraph of H − {w′}. As H − {w′} is 2-SRIG by our

earlier observation, this means that X ′1 is 2-SRIG, which contradicts the

fact that it contains the non-(2-SRIG) graph X1 as an induced subgraph.

This shows that G is asteroidal non-(2-SRIG)-free and hence completes

the proof.

We shall now prove a general theorem that will later be used to prove

Theorem 2.8.2.
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Theorem 2.8.3. Let k ≥ 4. For each i ∈ {k, k − 1, k − 2}, let Ti, T
′
i be

two graphs that are i-SRIG but not (i− 1)-SRIG and let ai ∈ V (Ti) and

a′i ∈ V (T ′i ). For i ∈ {k, k − 1, k − 2}, let Hi be the graph obtained by

adding a new vertex bi to the disjoint union of Ti and T ′i and connecting

it to ai and a′i using paths of length at least two. Let T be the graph

obtained by adding a new vertex c to the disjoint union of Hk, Hk−1 and

Hk−2 and then connecting c to each of bk, bk−1 and bk−2 using paths of

length at least two. Then T is not k-SRIG.

Proof. Suppose for the sake of contradiction that T is k-SRIG. Let R be

a (k + 2)-stabbed rectangle intersection representation of T in which the

top and bottom stab lines do not intersect any rectangle. Let A be a good

region that contains all the rectangles of R, i.e., TA = T (note that such

a region exists; we can consider a rectangle with top and bottom edges on

the top and bottom stab lines such that it contains all the rectangles of

R). As the only two stab lines that are not intersected by any rectangle

in R are the top and bottom stab lines (recall that TA is not (k−1)-SRIG

as it contains Tk and T ′k), it follows that |LR(A)| = k. As Tk and T ′k are

k-SRIG but not (k − 1)-SRIG, we know that there are LR(A)-spanning

paths in each of them. Let X1 and X2 be minimal LR(A)-spanning paths

in Tk and T ′k respectively. It is easy to see that X1 and X2 are neighbour-

disjoint. Let X be an induced path in TA that connects some vertex of

X1 and some vertex of X2 such that no internal vertex of X belongs to

either X1 or X2. Note that X is a subgraph of Hk that contains bk. Let

(At, Ab) = ∆(R, A,X1, X2, X).

(+) By Observation 2.8.3(iv), if for x ∈ V (T ), the rectangle rx inter-

sects bottom(At), then x has a neighbour on X.

Since there is a path in TA from c ∈ V (TA) to a vertex in X (in this

case, bk) that misses both X1 and X2, we know by Lemma 2.8.4 that

rc is contained in At or Ab. We shall assume without loss of generality

that rc is contained in At (see Figure 2.8.3(a)). Let us define B = At.

Let T ∗ be the graph obtained by removing the vertices in V (Hk) and
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A At = B

Ab

x

x1 x2

A

x

x1 x2

Bb = C

Bt
y

y2y1

(a) (b)

A

x

x1 x2

Cb

y

y2y1

Ct

z

z1 z2

(c)

Figure 2.8.3: An illustration of various stages of the proof of Theo-
rem 2.8.3. The region bounded by the dashed curve is A. The solid
curves represent the rectilinear curves through paths chosen in the
proof to split the regions. For example, the solid curve labelled x1 is
the rectilinear curve through the path X1, the solid curve labelled y
is the rectilinear curve through the path Y and so on. The shaded re-
gion indicates the possible locations of the rectangle rc as the proof
proceeds.

their neighbours from T , or in other words, T ∗ = T − (V (Hk) ∪ N [bk]).

Note that there is a path in TA from c to each vertex of T ∗ that misses

X1, X2 and X. We can now infer using Lemma 2.8.5 that the rectangles

corresponding to the vertices in T ∗ are all contained in At = B. In other

words, T ∗ is a connected induced subgraph of TB.

Since T ∗ contains Tk−1 and T ′k−1 as induced subgraphs, and is therefore

not (k−2)-SRIG, we have |LR(B)| ≥ k−1. By Lemma 2.8.2, this means

that B = At is a good region. Since B does not contain the bottom stab
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line in LR(A) by Lemma 2.8.1(b), we can conclude that |LR(B)| = k−1.

Now, Tk−1 and T ′k−1 are two neighbour-disjoint subgraphs of T ∗ that are

(k−1)-SRIG but not (k−2)-SRIG. Since the rectangles corresponding to

the vertices in them are all contained in B (recall that T ∗ is an induced

subgraph of TB), there is at least one vertex of Tk−1 and at least one

vertex of T ′k−1 on every stab line in LR(B). This means that there exist

minimal LR(B)-spanning paths Y1 in Tk−1 and Y2 in T ′k−1, and it is clear

that Y1 and Y2 are neighbour-disjoint. Let Y be an induced path in

T ∗ that connects some vertex of Y1 and some vertex of Y2 such that no

internal vertex of Y belongs to either Y1 or Y2. Note that Y is a subgraph

of Hk−1 that contains bk−1. Let (Bt, Bb) = ∆(R, B, Y1, Y2, Y ).

(++) By Observation 2.8.3(iv), if for x ∈ V (T ), the rectangle rx inter-

sects top(Bb), then x has a neighbour on Y .

Since there is a path in T ∗ from c to a vertex in Y (in this case,

bk−1) that misses both Y1 and Y2, we know by Lemma 2.8.4 that rc is

contained in Bt or Bb. Suppose that rc is contained in Bt. Note that

the path Q in T between c and bk misses Y1, Y2 and Y . As bk lies

on the path X, we know by Observation 2.8.3(iii) that rbk intersects

bottom(B). This means that rbk contains some points from outside B

and hence some points from outside Bt. Since rc is contained in Bt,

this can only mean that there exists some vertex x in Q such that the

rectangle rx intersects the boundary of Bt. Since x has no neighbour

on Y1, Y2 or Y , we know by Lemma 2.8.3 that rx intersects top(Bt).

Since B = At and A are good regions, we have by Observation 2.8.3(i)

that top(Bt) ⊆ top(At) ⊆ top(A). This implies that rx intersects the

boundary of A, which is a contradiction to the fact that T = TA (or in

other words, all rectangles corresponding to vertices of T are contained

in A). Thus, we can conclude that rc is not contained in Bt, and hence

is contained in Bb (See Figure 2.8.3(b)). Let us define C = Bb.

Let T ∗∗ be the graph obtained by removing the vertices in V (Hk−1)

and their neighbours from T ∗, or in other words, T ∗∗ = T ∗− (V (Hk−1)∪
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N [bk−1]). Note that c ∈ V (T ∗∗) and that there is a path in T ∗ from c

to each vertex of T ∗∗ that misses Y1, Y2 and Y . We can now infer using

Lemma 2.8.5 that the rectangles corresponding to the vertices in T ∗∗ are

all contained in C. In other words, T ∗∗ is a connected induced subgraph

of TC .

Since T ∗∗ contains Tk−2 and T ′k−2 as induced subgraphs, and is therefore

not (k−3)-SRIG, we have |LR(C)| ≥ k−2. By Lemma 2.8.2, this means

that C is a good region. Since C does not contain the top stab line

in LR(B) by Lemma 2.8.1(b), we can conclude that |LR(C)| = k − 2.

Now, Tk−2 and T ′k−2 are two neighbour-disjoint subgraphs of T ∗∗ that are

(k − 2)-SRIG but not (k − 3)-SRIG. Since T ∗∗ is an induced subgraph

of TC , at least one vertex of Tk−2 and at least one vertex of T ′k−2 are on

every stab line in LR(C). This means that there exist minimal LR(C)-

spanning paths Z1 in Tk−2 and Z2 in T ′k−2, which are neighbour-disjoint.

Let Z be an induced path in T ∗∗ that connects some vertex of Z1 and

some vertex of Z2 such that no internal vertex of Z belongs to either

Z1 or Z2. Note that Z is a subgraph of Hk−2 that contains bk−2. Let

(Ct, Cb) = ∆(R, C, Z1, Z2, Z).

Since there is a path in T ∗∗ from c to a vertex in Z (in this case,

bk−2) that misses both Z1 and Z2, we know by Lemma 2.8.4 that rc is

contained in Ct or Cb (See Figure 2.8.3(c)). Suppose that rc is contained

in Ct. Note that the path Q in T between c and bk misses Z1, Z2, Z and

Y . As bk lies on the path X, we know by Observation 2.8.3(iii) that rbk
intersects bottom(B). This means that rbk contains some points from

outside B, and hence some points from outside Ct. Since rc is contained

in Ct, this can only mean that there exists some vertex x in Q such that

the rectangle rx intersects the boundary of Ct. Since x has no neighbour

on Z1, Z2 or Z, we know by Lemma 2.8.3 that rx intersects top(Ct).

Since C = Bb is a good region, we have by Observation 2.8.3(i) that

top(Ct) ⊆ top(Bb), implying that rx intersects top(Bb). By (++), we

now have that x has a neighbour on Y , which is a contradiction to the
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fact that Q misses Y . This means that rc is contained in Cb.

Now consider the path Q in T between c and bk−1. It is clear that

Q misses Z1, Z2, Z and X. As bk−1 lies on the path Y , we know by

Observation 2.8.3(iii) that rbk−1
intersects top(C). This means that rbk−1

contains some points from outside C, and hence some points from outside

Cb. Since rc is contained in Cb, this can only mean that there exists some

vertex x in Q such that the rectangle rx intersects the boundary of Cb.

Since x has no neighbour on Z1, Z2 or Z, we know by Lemma 2.8.3 that

rx intersects bottom(Cb). Since C = Bb and B = At are good regions,

we have by Observation 2.8.3(i) that bottom(Cb) ⊆ bottom(Bb) ⊆
bottom(At), implying that rx intersects bottom(At). By (+), we now

have that x has a neighbour on X, which is a contradiction to the fact

that Q misses X. This completes the proof.

Proof of Theorem 2.8.2.

Let k be any integer greater than or equal to 4. For each i ∈ {k, k −
1, k − 2}, let Ti, T

′
i be two rooted trees that are each isomorphic to Gi

(defined in Section 2.7). From Lemma 2.7.1(i) and Lemma 2.7.1(ii) we

know that Ti and T ′i are i-SRIG but not (i− 1)-SRIG. Let ai = root(Ti)

and a′i = root(T ′i ). For i ∈ {k, k−1, k−2}, let Hi be the tree obtained by

adding a new vertex bi to the disjoint union of Ti and T ′i and connecting

it to ai and a′i using paths of length two. Note that Hi is isomorphic to Fi

(also defined in Section 2.7). Let T be the tree obtained by adding a new

vertex c to the disjoint union of Hk, Hk−1 and Hk−2 and then connecting

c to each of bk, bk−1 and bk−2 using paths of length at least two. See

Figure 2.8.4 for a schematic diagram of T . From Theorem 2.8.3, we know

that T is not k-SRIG.

We now show that T is asteroidal-(non-(k − 1)-ESRIG)-free. For the

sake of contradiction, assume that there are three subtrees X1, X2, X3

that are asteroidal-(non-(k − 1)-ESRIG) in T . The following claim is
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Tk Hk T ′k

bkak a′k

T ′k−1

Tk−1

Hk−1

bk−1

ak−1

a′k−1

T ′k−2

Tk−2

Hk−2

bk−2

ak−2

a′k−2

c

Figure 2.8.4: A schematic diagram of T . For each i ∈ {k, k − 1, k − 2},
let Ti, T

′
i be two rooted trees that are each isomorphic to Gi (defined in

Section 2.7) and rooted at ai and a′i respectively.

easy to see.

Claim. There is a vertex v in T of degree at least 3 such that T − {v}
contains three components X ′1, X

′
2, X

′
3 where for each i ∈ {1, 2, 3}, Xi is

an induced subtree of X ′i −N [v].

Let v be the vertex in T of degree at least 3 such that T −{v} contains

three components X ′1, X
′
2, X

′
3 where for each i ∈ {1, 2, 3}, Xi is an induced

subtree of X ′i − N [v]. For each i ∈ {1, 2, 3}, since Xi is non-(k − 1)-

ESRIG, we also have that X ′i is non-(k − 1)-ESRIG. Let us assume that

v is a vertex of Tk. Note that T − V (Tk) has only one component. Then

by Observation 2.7.1(ii), all but one component of T − {v} are proper

subtrees of Tk. This implies that there exist distinct X, Y ∈ {X ′1, X ′2, X ′3}
such that X, Y are proper subtrees of Tk. Therefore, X and Y are vertex-

disjoint (in fact, neighbour-disjoint) subtrees of Tk that are both non-

(k − 1)-ESRIG. But since Tk is isomorphic to Gk, this is a contradiction

to Lemma 2.7.1(iv). Hence, v is not a vertex of Tk and for similar reasons,

v is not a vertex of T ′k. Let T ∗ = T − (V (Hk) ∪N [bk]).

Claim. The tree T ∗ is (k − 1)-ESRIG.
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... R2

R1

ak−1
a′k−1

ak−2 a′k−2

bk−1

c

bk−2

Figure 2.8.5: A schematic diagram of the (k − 1)-stabbed rectangle
intersection representation R of T ∗.

Proof. From the definition of T , we know that T ∗ is the union of Hk−1,

Hk−2 and the path in T between bk−1 and bk−2 (which contains the ver-

tex c). Recall that Hk−1 is obtained by adding a new vertex bk−1 to the

disjoint union of Tk−1 and T ′k−1 and connecting their roots (i.e. ak−1 and

a′k−1 respectively) to bk−1 using paths of length two. Therefore, Hk−1

is isomorphic to Fk−1. Let R1 be the (k − 1)-exactly stabbed rectangle

intersection representation of Hk−1 that is given by Lemma 2.7.1(iii)(a).

Similarly, Hk−2 is isomorphic to Fk−2. Let R2 be the (k − 2)-exactly

stabbed rectangle intersection representation of Hk−2 that is given by

Lemma 2.7.1(iii)(b), in which the only vertices on the top stab line are

those in N [ak−2] ∪ N [a′k−2]. It can now be seen that the two represen-

tations R1 and R2 can be combined as shown in Figure 2.8.5 to ob-

tain a (k − 1)-exactly stabbed rectangle intersection representation R of

T ∗[V (Hk−1)∪V (Hk−2)] that satisfies the following properties: (i) all ver-

tices of the path between ak−1 and a′k−1 are on the top stab line of R, (ii)

a vertex u ∈ V (Hk−2) is on the stab line just below the top stab line of R
if and only if u ∈ N [ak−2]∪N [a′k−2], and (iii) for any vertex u ∈ V (Hk−2),

we have that span(u) ⊂ span(bk−1). We leave it to the reader to verify

that R can be extended to a (k − 1)-exactly stabbed rectangle intersec-

tion representation of T ∗ by adding the rectangles corresponding to the

three vertices in the path between bk−1 and bk−2 (refer to Figure 2.8.5).
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Therefore we conclude that T ∗ is (k − 1)-ESRIG.

Now suppose v is a vertex of Hk. Since we have already concluded

that v /∈ V (Tk) ∪ V (T ′k), we can infer that v must be the vertex bk.

Recalling the definition of T , we can infer that T −{bk} has exactly three

components and since bk = v we know that they are X ′1, X
′
2, X

′
3. Also

from the definition of T , it follows that there exists i ∈ {1, 2, 3} such that

X ′i = T − V (Hk). We know from the definition of v that Xi is a subtree

of X ′i − N [v] = T ∗. But then by the above claim, we have that Xi is

(k− 1)-ESRIG, which contradicts the fact that Xi is non-(k− 1)-ESRIG.

From the above arguments, we infer that v must lie in the tree T −
V (Hk). Since v has degree at least 3, we can infer from the construction of

T that v ∈ V (T ∗). Notice that T −V (T ∗) has only one component. Then

by Observation 2.7.1(ii), all but one component of T − {v} are proper

subtrees of T ∗. This implies that there is a component X ∈ {X ′1, X ′2, X ′3}
such that X is a proper subtree of T ∗. But by the above claim, we now

have that X is (k− 1)-ESRIG, contradicting our earlier observation that

X ′1, X
′
2, X

′
3 are all non-(k − 1)-ESRIG. This completes the proof.

2.9 Trees that are k-SRIG but not k-ESRIG

We define the tree Dl, for l > 1, as follows. Let T1, T2, . . . , T7 be seven

rooted trees, each isomorphic to Gl−1. Take a K1,7 with vertex set

{u, u1, u2, . . . , u7}, where u1, u2, . . . , u7 are the leaves, and add edges be-

tween ui and root(Ti) for each i ∈ {1, 2, . . . , 7}. The resulting graph is

Dl and we let root(Dl) = u.

Lemma 2.9.1. Let l > 1.

(i) Dl is not (l − 1)-SRIG.

(ii) There is an l-exactly stabbed rectangle intersection representation

R of Dl such that for v, w ∈ V (Dl), span(v) ⊆ span(w) if w is an
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ancestor of v and the rectangles intersecting the top stab line of R
are exactly the vertices in N [root(Dl)].

(iii) Let T and T ′ be two trees each isomorphic to Dl. Let Jl be the tree

obtained by taking a new vertex u and joining it to the root vertices

of T, T ′ using paths of length two.

(a) There is an l-exactly stabbed rectangle intersection representa-

tion R′ of Jl such that for v, w ∈ V (Jl), span(v) ⊆ span(w) if

w is an ancestor of v in T or T ′, and all vertices in the path

between root(T ) and root(T ′) are on the top stab line of R′.
(b) If l ≥ 6, then in any l-exactly stabbed rectangle intersection

representation of Jl, root(T ) and root(T ′) are either both on

the top stab line or both on the bottom stab line.

(iv) In any l-exactly stabbed rectangle intersection representation R of

Dl, root(Dl) is on the top or bottom stab line of R.

Proof. For (i), it is easy to see that Gl is an induced subgraph of Dl,

and therefore by Lemma 2.7.1(i), Dl is not (l − 1)-SRIG. It is also

easy to see that the constructions in the proofs of Lemma 2.7.1(ii) and

Lemma 2.7.1(iii)(a) can be easily extended to prove (ii) and (iii)(a) re-

spectively.

We shall now prove (iv). Suppose for the sake of contradiction that

there exists an l-exactly stabbed rectangle intersection representation R
of Dl in which root(Dl) is not on the top or bottom stab lines. Recall

that Dl is constructed by taking a K1,7 with vertex set {u, u1, u2, . . . , u7}
with leaves u1, u2, . . . , u7 and making each ui adjacent to the root of a

tree Ti that is isomorphic to Gl−1. For each i ∈ {1, 2, . . . , 7}, let T ′i =

Dl[{ui}∪V (Ti)]. Suppose that there exists I ⊆ {1, 2, . . . , 7} with |I| = 3

such that for each i ∈ I, there is no vertex in T ′i that is on the top stab

line. Then, since u = root(Dl) is not on the top stab line, the rectangles

corresponding to the vertices of {u}∪⋃i∈I V (T ′i ) form an (l−1)-(exactly)
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stabbed rectangle intersection representation of a tree isomorphic to Gl.

This contradicts Lemma 2.7.1(i). Therefore, there are at most two trees

in {T ′1, T ′2, . . . , T ′7} such that none of their vertices are on the top stab

line. In similar fashion, we can conclude that there are at most two trees

in {T ′1, T ′2, . . . , T ′7} such that none of their vertices are on the bottom stab

line. This means that there are at least three trees in {T ′1, T ′2, . . . , T ′7},
say T ′1, T

′
2, T

′
3, such that |LR(T ′1)| = |LR(T ′2)| = |LR(T ′3)| = l. For i ∈

{1, 2, 3}, let Pi be an LR(T ′i )-spanning induced path in T ′i starting at a

vertex xi that is on the top stab line and ending at a vertex yi that is on

the bottom stab line. Let pi be a rectilinear curve through Pi starting

at some point on the top stab line in rxi and ending at some point on

the bottom stab line in ryi . As T ′1, T
′
2, T

′
3 are pairwise neighbour-disjoint,

we know that P1, P2, P3 are also pairwise neighbour-disjoint, implying

that the curves p1,p2,p3 are pairwise disjoint. Therefore one of the

curves, say p2, is between the other two. Then, it is easy to see that any

path between a vertex of T ′1 and a vertex of T ′3 contains a vertex whose

rectangle intersects p2, which means that this vertex has a neighbour on

P2. Now consider the path u1uu3. As the only vertex on this path that

has a neighbour in V (T2) is u = root(Dl), we can infer that ru intersects

p2. It follows from the definition of rectilinear curves that there is a

point q ∈ ru ∩ p2 that is also on a stab line, say `. As u = root(Dl) is

on `, we can conclude that ` is neither the top nor the bottom stab line

of R. Since the point q ∈ p2, it belongs to the rectangle corresponding

to a vertex on P2 that intersects ru. Note that if u has a neighbour

on P2, then it has to be u2. This lets us conclude that u2 is on P and

also that q ∈ ru2 , which implies that u2 is on `. As R is an l-exactly

stabbed rectangle intersection representation, we infer that u2 is neither

on the top nor the bottom stab line. Then, u2 /∈ {xi, yi}. But this means

that xi, yi ∈ V (Ti), implying that the path P2 does not contain u2. This

contradicts our earlier observation that u2 is on P2.

It only remains to prove (iii)(b). Let l ≥ 6 and let R be any l-exactly
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stabbed rectangle intersection representation of Jl. Let `, `′ be the stab

lines that intersect rroot(T ) and rroot(T ′) respectively. By (iv), we know

that each of `, `′ is either the top stab line or the bottom stab line. Since

there is a path of length 4 between root(T ) and root(T ′) in Jl, we can

infer that ` and `′ have no more than 3 stab lines between them. Since

l ≥ 6, this means that it is not possible that one of `, `′ is the top stab

line and the other the bottom stab line. So `, `′ are either both the top

stab line or both the bottom stab line.

Lemma 2.9.2. Let R be a k-exactly stabbed rectangle intersection rep-

resentation of a graph G and let R be a good region in this representa-

tion. Let P1 and P2 be minimal LR(R)-spanning paths in GR that are

neighbour-disjoint and let P be an induced path in GR between some ver-

tex in V (P1) and some vertex in V (P2) such that no internal vertex of

P is on P1 or P2. Let (Rt, Rb) = ∆(R, R, P1, P2, P ). Suppose that there

are two nonadjacent vertices x1, x2 ∈ V (P ) that are on the top (bottom)

stab line in LR(R) such that the subpath P ′ of P between x1 and x2 has

length at most d, for some d ≥ 2. Then there are no connected induced

subgraph H of GRt (GRb) which is neighbour-disjoint from P1, P2, P and

satisfies the following properties:

(i) |LR(H)| >
⌈
d−1

2

⌉
, and

(ii) H contains a vertex c such that there exists a path in GR from c to

some vertex in P ′ that misses x1, x2, P1, P2 and P − V (P ′).

Proof. We shall prove the lemma only for the case when x1 and x2 are

on the top stab line in LR(R), as the other case can be proved in similar

fashion. Suppose there exists a connected component H of GRt that is

neighbour-disjoint from P1, P2 and P such that |LR(H)| >
⌈
d−1

2

⌉
, and

there exists c ∈ V (H) from which there is a path Q in GR to some vertex

in P ′ that misses x1, x2, P1, P2 and P − V (P ′). For i ∈ {1, 2}, let

ui, vi be the endvertices of Pi on the top and bottom stab lines in LR(R)
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respectively, and let V (Pi) ∩ V (P ) = {wi}. Let us assume without loss

of generality that x1 appears before x2 when traversing the path P from

w1 to w2. For i ∈ {1, 2}, define P ′i to be the path obtained by the union

of the subpath of Pi between vi and wi and the subpath of P between wi

and xi. It is clear that P ′1 and P ′2 are neighbour-disjoint LR(R)-spanning

paths in GR and that P ′ is an induced path in GR between a vertex in

V (P ′1) and a vertex in V (P ′2) none of whose internal vertices are on either

P ′1 or P ′2. Let (R′t, R
′
b) = ∆(R, R, P ′1, P ′2, P ′). As R is a k-exactly stabbed

rectangle intersection representation and P ′ has length d, it follows that

|LR(R′t)| ≤
⌈
d−1

2

⌉
.

Since P ′ misses c and there is the path Q in GR between c and a vertex

of P ′ that misses both P ′1 and P ′2, we can apply Lemma 2.8.4 to conclude

that rc is contained in R′t or R′b. It is easy to see that for any vertex z

that misses P1, P2 and P , the rectangle rz is contained in R′b if and only

if it is contained in Rb. As we know that c ∈ V (GRt), which implies that

rc is contained in Rt and therefore not in Rb, we can now conclude that

rc is contained in R′t. Since H is neighbour-disjoint from P1, P2 and P ,

it is also neighbour-disjoint from P ′1, P ′2 and P ′. As H is connected, this

means that there is a path in GR from c to each vertex of H that misses

P ′1, P ′2 and P ′. By Lemma 2.8.5, we now have that H is an induced

subgraph of GR′t
. This means that |LR(R′t)| >

⌈
d−1

2

⌉
, contradicting our

earlier observation.

Theorem 2.9.1. For every k ≥ 10, there is a tree which is k-SRIG but

not k-ESRIG.

Proof. Let k be any integer greater than or equal to 10. For each i ∈
{k, k − 1}, let Ti, T

′
i be two rooted trees that are each isomorphic to

Di and let Tk−2 be a tree isomorphic to Dk−2. From Lemma 2.9.1(i) and

Lemma 2.9.1(ii), we know that for i ∈ {k, k−1}, Ti and T ′i are i-SRIG but

not (i− 1)-SRIG. For i ∈ {k, k − 1}, let ai = root(Ti) and a′i = root(T ′i ).

Further, let Hi be the tree obtained by adding a new vertex bi to the
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Tk Hk T ′k

bkak a′k

T ′k−1

Tk−1
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ak−1
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Figure 2.9.1: A schematic diagram of T . For each i ∈ {k, k − 1}, let
Ti, T

′
i two rooted trees that are each isomorphic to Di and rooted at ai

and ai respectively. Tk−2 is isomorphic to Dk−2 and is rooted at ak−2.

disjoint union of Ti and T ′i and connecting it to ai and a′i using paths

of length two. Let ak−2 = root(Tk−2). Let T be the tree obtained by

adding a new vertex c to the disjoint union of Hk, Hk−1 and Tk−2 and

then connecting c to each of bk, bk−1 and ak−2 using paths of length two.

See Figure 2.9.1 for a schematic diagram of T . We claim that T is k-SRIG

but not k-ESRIG.

We will first show that T is k-SRIG. Let `1, `2, . . . , `k be k horizontal

lines, ordered from bottom to top. Since Hk is isomorphic to Jk, we know

from Lemma 2.9.1(iii)(a) that there is a k-(exactly) stabbed rectangle

intersection representation R1 of Hk using stab lines `1, `2, . . . , `k such

that for v, w ∈ V (Hk), span(v) ⊆ span(w) if w is an ancestor of v in Tk or

T ′k, and all vertices in the path in T between ak and a′k are on the bottom

stab line `1. Similarly, there is a (k − 1)-(exactly) stabbed rectangle

intersection representation R2 of Hk−1 using stab lines `2, `3, . . . , `k such

that for v, w ∈ V (Hk−1), span(v) ⊆ span(w) if w is an ancestor of v in

Tk−1 or T ′k−1, and all vertices in the path in T between ak−1 and a′k−1 are

on the top stab line `k. By Lemma 2.9.1(ii), there exists a (k−2)-(exactly)
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R1

R2

R3 c

...

bk−1
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ak−1 a′k−1

ak a′k

ak−2

Figure 2.9.2: A schematic diagram of a k-stabbed rectangle intersection
representation of T .

stabbed rectangle intersection representation R3 of Tk−2 using stab lines

`2, `3, . . . , `k−1 such that for v, w ∈ V (Tk−2), span(v) ⊆ span(w) if w

is an ancestor of v in Tk−2, and the only vertices in Tk−2 that are on

the stab line `k−2 are the ones in N [ak−2]. It can be seen as shown in

Figure 2.9.2 that R1, R2 and R3 can be combined and rectangles for the

vertices in N [c] can be added to obtain a k-stabbed rectangle intersection

representation of T in which for any x ∈ V (Hk−1), span(x) ⊆ span(bk)

and for any x ∈ V (Tk−2), span(x) ⊆ span(bk−1).

Suppose for the sake of contradiction that T is k-ESRIG. This part of

the proof proceeds very similarly to the proof of Theorem 2.8.3. As in

that proof, we let R be a (k + 2)-exactly stabbed rectangle intersection

representation of T in which the top and bottom stab lines do not intersect

any rectangle and let A be a good region that contains all the rectangles of

R. As Tk and T ′k are k-SRIG but not (k−1)-SRIG, we have |LR(A)| = k

and there are LR(A)-spanning paths in both Tk and T ′k. Let X1 and X2

be minimal LR(A)-spanning paths in Tk and T ′k respectively. Let X be an

induced path in T that connects some vertex of X1 and some vertex of X2

such that no internal vertex of X belongs to either X1 or X2. Note that X

is a subgraph of Hk that contains bk. Let (At, Ab) = ∆(R, A,X1, X2, X).

Since there is a path in TA = T from c ∈ V (TA) to a vertex in X (in
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this case, bk) that misses both X1 and X2, we know by Lemma 2.8.4 that

rc is contained in At or Ab. We shall assume without loss of generality

that rc is contained in At. Let T ∗ = T − (V (Hk) ∪N [bk]). Since there is

a path in TA from c to each vertex of T ∗ that misses X1, X2 and X, we

can use Lemma 2.8.5 to infer that T ∗ is a connected induced subgraph of

TAt .

Claim. Both the vertices ak and a′k are on the bottom stab line in LR(A).

Proof. Let X ′ be the path in TA between ak and a′k. Clearly, X ′ has

length 4 and is a subpath of X. The tree T ∗ contains Tk−1 as an induced

subgraph, and is therefore not (k − 2)-SRIG by Lemma 2.9.1(i). Hence,

|LR(T ∗)| ≥ k − 1. Since T ∗ contains the vertex c that has a path to

a vertex in X ′ which misses ak, a
′
k, X1, X2 and X − V (X ′), we can use

Lemma 2.9.2 to infer that at least one of ak and a′k is not on the top stab

line in LR(A). Notice that the graph induced by V (Tk)∪ V (T ′k)∪ V (X ′)

in T = TA is isomorphic to Jk. This means that there is a k-exactly

stabbed rectangle intersection representation of Jk contained in the region

A. Using Lemma 2.9.1(iii)(b), we can now conclude that both ak and a′k
are on the bottom stab line in LR(A). This completes the proof.

From here onwards, we shall let B = At, for ease of notation. From the

above arguments, we know that |LR(T ∗)| ≥ k − 1 and T ∗ is a connected

induced subgraph of TB. Therefore, |LR(B)| ≥ k − 1. By Lemma 2.8.2,

this means that B is a good region and by Lemma 2.8.1(b), we can

conclude that |LR(B)| = k − 1. Now, Tk−1 and T ′k−1 are two neighbour-

disjoint subtrees of T ∗ that are (k− 1)-SRIG but not (k− 2)-SRIG. This

means that there exist minimal LR(B)-spanning induced paths Y1 in Tk−1

and Y2 in T ′k−1. Let Y be an induced path in T ∗ that connects some vertex

of Y1 and some vertex of Y2 such that no internal vertex of Y belongs to

either Y1 or Y2. Note that Y is a subgraph of Hk−1 that contains bk−1.

Let (Bt, Bb) = ∆(R, B, Y1, Y2, Y ).

Since there is a path in T ∗ from c to a vertex in Y (in this case, bk−1)
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that misses both Y1 and Y2, we know by Lemma 2.8.4 that rc is contained

in Bt or Bb. As explained in the proof of Theorem 2.8.3, it can be shown

that rc is contained in Bb (if rc is contained in Bt, then there could not

have been a path in T between c and the vertex bk in X that misses Y1,

Y2 and Y ). Let T ∗∗ = T ∗ − (V (Hk−1) ∪ N [bk−1]). Since there is a path

in TB from c to each vertex of T ∗∗ that misses Y1, Y2 and Y , we can use

Lemma 2.8.5 to infer that T ∗∗ is a connected induced subgraph of TBb .

Claim. Both the vertices ak−1 and a′k−1 are on the top stab line in

LR(A).

Proof. Let Y ′ be the path in T between ak−1 and a′k−1. Clearly, Y ′ has

length 4 and is a subpath of Y . The tree T ∗∗ contains Tk−2 as an induced

subgraph, and is therefore not (k − 3)-SRIG, implying that |LR(T ∗∗)| ≥
k − 2. Since T ∗∗ contains the vertex c that has a path to a vertex in Y ′

which misses ak−1, a
′
k−1, Y1, Y2 and Y −V (Y ′), we can use Lemma 2.9.2 to

infer that at least one of ak−1 and a′k−1 is not on the bottom stab line in

LR(B). Notice that the graph induced by V (Tk−1)∪V (T ′k−1)∪V (Y ′) in T ∗

is isomorphic to Jk−1. This means that there is a (k− 1)-exactly stabbed

rectangle intersection representation contained in the region B. Using

Lemma 2.9.1(iii)(b), we can now conclude that both ak−1 and a′k−1 are on

the top stab line in LR(B). Now since B = At and |LR(B)| = |LR(A)|−1,

we know by Lemma 2.8.1(b) that the top stab line in LR(B) is also the

top stab line in LR(A). This completes the proof of the claim.

Let `1, `2, . . . , `k be the stab lines in LR(A) in order from bottom to top.

Now, the fact that each rectangle in R intersects exactly one stab line

gives us several observations. Since there is a path of length 2 between

bk and ak in T , and because our first claim tells us that ak is on `1, we

can conclude that bk is not on any of the stab lines in {`4, `5, . . . , `k}.
Similarly, our second claim tells us that ak−1 is on `k, and then the fact

that there is a path of length 2 between ak−1 and bk−1 implies that bk−1

cannot be on any stab line in {`k−3, `k−4, . . . , `2, `1}. Now, since there is
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a path of length 4 between bk and bk−1, there can be at most 3 stab lines

between `3 and `k−2. But this contradicts the fact that k ≥ 10.

2.10 Concluding remarks and open problems

In this chapter, we introduced the stab number of rectangle intersection

graphs. We constructed polynomial-time algorithm to check if stab(G) ≤
2 for any block graph G. However, the structure of 2-SRIG remains a

mystery.

Therefore, the direction of further research could be to investigate the

subclasses of 2-SRIGs and try to characterise these classes of graphs.

Question 2.10.1. Develop a forbidden structure characterization and/or

a polynomial-time recognition algorithm for 2-SRIG.

Note that Theorem 2.6.1 gives a characterisation of the 2-SRIGs within

the class of block graphs. This theorem shows that within the class of

block graphs, those graphs that do not contain asteroidal-(non-interval)

subgraphs are exactly the 2-SRIGs. From the characterisation of in-

terval graphs by Boland and Lekkerkerker (Theorem 1.1.1), we know

that the absence of asteroidal triples characterises the 1-SRIGs within

chordal graphs. Therefore, a natural question is whether the absence of

asteroidal-(non-interval) subgraphs is enough to characterise the 2-SRIGs

within chordal graphs (note that block graphs are a subclass of chordal

graphs). The answer to this question is negative, as we have shown

in Theorem 2.4.3 that there are split graphs that are not 2-SRIG. Split

graphs are chordal and clearly, no split graph can contain asteroidal-(non-

interval) subgraphs, as for any three connected induced subgraphs that

are pairwise neighbour-disjoint in a split graph, at least two of them will

contain just one vertex each. This gives rise to the following question.

Question 2.10.2. Find a forbidden structure characterisation for

chordal graphs (resp. split graphs) that are 2-SRIG. Can chordal graphs
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(resp. split graphs) that are 2-SRIG be recognised in polynomial-time?

We have shown that any split graph with boxicity at most 2 is 3-SRIG

and that there exists a split graph which is 3-SRIG but not 2-SRIG.

Therefore, the following question is interesting.

Question 2.10.3. What is the complexity of recognising split graphs that

are 3-SRIG?

Note that by Theorem 2.4.2, the above problem is equivalent to the

problem of recognising split graphs that have boxicity at most 2. This

problem assumes significance because recognising split graphs that have

boxicity at most 3 is NP-complete [4].

We constructed polynomial-time algorithm to check if stab(T ) ≤ 3

for any tree T . Therefore, the following are essential questions in this

direction.

Question 2.10.4. For a given block graph G, is it possible to determine

stab(G) in polynomial-time?

Question 2.10.5. For a given tree T , is it possible to determine stab(T )

in polynomial-time?

We showed that K4,4 is not k-ESRIG for any finite k, but is 4-SRIG.

Here, the question arises as to how high the exact stab number of an

exactly stabbable graph can be with respect to its stab number. Theo-

rem 2.4.4 shows that trees are exactly stabbable and Theorem 2.9.1 shows

a tree T such that estab(T ) > stab(T ) (in fact, it is an easy exercise to

show that estab(T ) = stab(T )+1). The following questions are, therefore

of interest.

Question 2.10.6. Is there a constant c such that for any tree T we have,

estab(T )− stab(T ) ≤ c or estab(T )
stab(T )

≤ c?

Question 2.10.7. For a given tree T , is it possible to determine estab(T )

in polynomial-time?
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In this chapter, we focus on rectangle intersection graphs of stab num-

ber at most two and its subclasses. First, we recall and introduce some
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definitions. Let G be a 2-SRIG with a 2-stabbed rectangle intersection

representation R in which the stab lines are y = a1 and y = a2 where

a1 < a2. The top (resp., bottom) stab line of R is the stab line y = a2

(resp., y = a1). A vertex u ∈ V (G) is “on” a stab line if ru intersects

that stab line. Note that the vertices on the top (resp., bottom) stab

line induce an interval subgraph of G, and the projection of their corre-

sponding rectangles on the X-axis provide an interval representation Rt

(resp., Rb) of this subgraph. Now by putting restrictions on Rt and Rb,

we have several subclasses of 2-SRIG as defined below.

Given a geometric intersection representation R of a graph, the nota-

tion R ∈ I means that R is an interval representation. Similarly, the

notation R ∈ P means that R is an interval representation where no

interval is a proper subset of another, R ∈ E means that R is an inter-

val representation where the intervals have equal lengths, R ∈ U means

that R is an interval representation where the intervals have unit lengths.

Note that R ∈ E and R ∈ U are equivalent notions up to scaling for in-

terval graphs [24]. Nevertheless, the above distinction is needed for the

definitions that follow.

If R is a 2-stabbed rectangle intersection representation of G with

Rt ∈ X and Rb ∈ Y , then R is said to be an (X ,Y)-representation of G,

where X ,Y ∈ {I,P , E ,U}. Moreover, G is an (X ,Y)-graph if it admits

an (X ,Y)-representation. Note that the class of (I, I)-graphs is the same

as 2-SRIG, while the classes (I,P), (I, E), (I,U), (P ,P), (P , E), (P ,U),

(E , E), (E ,U), and (U ,U)-graphs are all subclasses of 2-SRIG. A note of

caution in this context is the following: in an (E , E)-representation R of

G, the lengths of the intervals of Rt may not be equal to the lengths of

the intervals of Rb. Furthermore, a graph G is a 2-stabbable unit square

intersection graph or 2-SUIG, if G has a 2-stabbed rectangle intersection

representation R in which all rectangles are unit squares.
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3.1 Chapter overview

In Section 3.2, we study the containment relationship among the graph

classes defined above. In Section 3.3, we prove that given a triangle-free

graph it is possible to figure out if it is a (P ,P)-graph or not in linear

time.

In Section 3.4, we prove that triangle-free 2-SRIGs are 3-colorable.

Moreover, we show that For every natural number c, there exists a

polynomial-time algorithm that decides whether an input 2-SRIG graph

is c-colorable.

The Chromatic Number problem is to decide, on given a graph G

and an integer c as input, whether G is c-colorable. In Section 3.5, we

prove that the problem of finding the chromatic number of a 2-SRIG

graph G, that is, deciding if G is c-colorable when c is part of the input,

remains NP-Hard, even if a 2-stabbed rectangle intersection representa-

tion of G is available. (In contrast, 1-SRIGs are nothing but the inter-

val graphs for which the Chromatic Number problem can be solved

in polynomial time.) This is a strengthening of a result of Imai and

Asano [102], who proved that the Chromatic Number problem is NP-

complete for rectangle intersection graphs, a superclass of 2-SRIGs. We

show that the Chromatic Number problem is NP-complete for a sub-

class of 2-SRIGs known as 2-row B0-VPGs.

A B0-VPG graph is an intersection graph of vertical and horizontal line

segments on the plane. Asinowski, Cohen, Golumbic and Limouzy [9]

proved that the Chromatic Number problem is NP-complete for B0-

VPG graphs. Chaplick, Cohen and Stacho [53] claimed in the conclusion

of their work that the Chromatic Number problem is NP-complete

even for the subclass of B0-VPG graphs where the horizontal line seg-

ments are contained in two horizontal reference lines. Observe that these

graphs, called “2-row B0-VPG graphs”, form a subclass of 2-SRIGs (the

horizontal reference lines are the stab lines in our definition). Note that
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1-row B0-VPG graphs are the same as interval graphs. As a proof for

the claim in [53] does not seem to have been published, in Section 3.5,

we prove that deciding if a 2-row B0-VPG graph G is c-colorable when c

is part of the input, remains NP-Hard. Finally, we draw conclusions in

Section 3.6.

3.2 Containment relationship among subclasses

of 2-SRIG

In this section, we prove the following theorem.

Theorem 3.2.1. 2-SUIG = (U ,U)-graphs ⊂ (E ,U)-graphs = (E , E)-

graphs ⊂ (P ,U)-graphs = (P , E)-graphs = (P ,P)-graphs ⊂ (I,U)-graphs

= (I, E)-graphs = (I,P)-graphs ⊂ 2-ESRIG = 2-SRIG.

We first note that 2-SRIG = 2-ESRIG. This is proved in [42], but we

give a proof below for the sake of completeness.

Lemma 3.2.1. 2-SRIG = 2-ESRIG.

Proof. Let G be a 2-SRIG with a 2-stabbed rectangle intersection repre-

sentation R which is not a 2-exactly stabbed rectangle intersection rep-

resentation. Thus some of the rectangles, say, ru1 , ru2 , . . . , rus intersect

both the top and bottom stab lines. Furthermore, let rv1 , rv2 , . . . , rvt be

the rectangles that intersect only the bottom stab y = a1. Now modify

the representation R by replacing the rectangles

rui = [x−ui , x
+
ui

]× [y−ui , y
+
ui

] by r′ui = [x−ui , x
+
ui

]× [a1, y
+
ui

]

for all i ∈ {1, 2, . . . , s} and by replacing the rectangles

rvj = [x−vj , x
+
vj

]× [y−vj , y
+
vj

] by r′vj = [x−vj , x
+
vj

]× [a1 − 2, y+
vj

]
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for all j ∈ {1, 2, . . . , t}. Now replace the bottom stab line by y = a1−1 to

obtain a 2-exactly stabbed rectangle intersection representation of G.

Observe that as 2-SRIG = 2-ESRIG, we have (I,P)-graphs ⊆ 2-

ESRIG. To show that the class of (I,P)-graphs is a proper subclass

of 2-ESRIG, we show that the graph depicted in Figure 3.2.1(a) is a

2-ESRIG but not an (I,P)-graph. The 2-exactly stabbed rectangle in-

tersection representation of this graph shown in Figure 3.2.1(b) proves

the former. For proving the latter, we need to work a bit more. First of

all we need to define some notations and terminologies.

Let G be a 2-SRIG with a 2-stabbed rectangle intersection represen-

tation R. The span of a vertex u is span(u) = [x−u , x
+
u ]. The span of

S ⊆ V (G) is span(S) = ∪u∈Sspan(u). Observe that when G[S], the

subgraph of G induced by S, is connected, span(S) is an interval. The

span of an edge uv ∈ E(G) is span(uv) = span(u) ∩ span(v). We write

I1 = [a1, b1] < I2 = [a2, b2] if b1 < a2. A set of vertices of G have a

common stab if all of them are on a particular stab line. A bridge edge

uv ∈ E(G) in R is an edge such that there are two different stab lines

having u on one of them and v on the other. Whenever the 2-stabbed

rectangle intersection representation of a graph G under consideration is

clear from the context, the terms ru, x
−
u , x+

u , y−u , y+
u , for every vertex

u ∈ V (G) and usages such as “on a stab line”, “have a common stab”,

“span” etc. are considered to be defined with respect to this representa-

tion.

Observation 3.2.1. Let R be a 2-exactly stabbed rectangle intersec-

tion representation of a graph G. Let uv be a bridge edge in R and

let S = {w ∈ V (G) : span(w)∩ span(uv) 6= ∅}. Let a, b ∈ V (G) such that

span(a) < span(uv) < span(b). Then a and b are in different connected

components of G− S.

Proof. Suppose that a and b are in the same connected component C of

G − S. As span(V (C)) is an interval that contains both span(a) and
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span(b), it is clear that span(V (C)) also contains span(uv). But this

means that C contains some vertex w such that span(w)∩ span(uv) 6= ∅,
which is a contradiction.

Note that in the above observation, if a /∈ N [u] ∪N [v] and b /∈ N [u] ∪
N [v], then as S ⊆ N [u] ∪ N [v], we can conclude that a and b are in

different connected components of G − (N [u] ∪ N [v]). We shall use this

form of Observation 3.2.1 in several places.

Observation 3.2.2. Let R be a 2-exactly stabbed rectangle intersection

representation of a graph G. Let ua, uv, ab ∈ E(G) such that uv and ab

are bridge edges in R while u and a are on the same stab line. Further,

let ub, av /∈ E(G). Then either span(ua) ∩ span(v) = ∅ or span(ua) ∩
span(b) = ∅.

Proof. Let I = span(ua). Clearly, I ⊆ span(u) and I ⊆ span(a). Sup-

pose for the sake of contradiction that I∩span(v) 6= ∅ and I∩span(b) 6= ∅.
Then, span(u)∩span(b) 6= ∅ and span(a)∩span(v) 6= ∅. Assume by sym-

metry that u and a are on the bottom stab line in R. As uv, ab ∈ E(G),

we have y−v ≤ y+
u and y−b ≤ y+

a . If y+
u ≤ y+

a , then we have y−v ≤ y+
a .

Since span(a) ∩ span(v) 6= ∅, this implies that av ∈ E(G), which is a

contradiction. On the other hand, if y+
a < y+

u , then y−b < y+
u , and since

span(u) ∩ span(b) 6= ∅, this gives ub ∈ E(G), which is again a contradic-

tion.

Observation 3.2.3. Let R be a 2-exactly stabbed rectangle intersection

representation of a triangle-free graph G. Let e1, e2 ∈ E(G) be two bridge

edges in R. Then, span(e1) ∩ span(e2) = ∅.

Proof. Let e1 = uv, e2 = ab, and let us assume without loss of generality

that u, a are on the bottom stab line and v, b are on the top stab line.

Since e1 and e2 are distinct edges, we shall also assume, by symmetry,

that u 6= a. Suppose that I = span(uv)∩span(ab) 6= ∅. Then ua ∈ E(G)

and ua is not a bridge edge. As G is triangle-free, we have ub, av /∈ E(G).

107



Further, notice that I ⊆ span(u), span(v), span(a), span(b), which also

implies that I ⊆ span(ua). But then I ⊆ span(ua) ∩ span(v) and I ⊆
span(ua) ∩ span(b), contradicting Observation 3.2.2.

Proposition 3.2.1. In any 2-exactly stabbed rectangle intersection rep-

resentation of a cycle of order greater than 3, there are exactly two bridge

edges.

Proof. Let G be a cycle of order greater than three having a 2-exactly

stabbed rectangle intersection representation R. Observe that, all the

vertices of G cannot have a common stab as G is not an interval graph.

This implies that in any 2-exactly stabbed rectangle intersection repre-

sentation of G, there are at least two bridge edges. Suppose that R has

more than two bridge edges. As G is triangle-free, we can use Observa-

tion 3.2.3 to order the bridge edges e1 = u1v1, e2 = u2v2, ..., ek = ukvk

of R such that span(e1) < span(e2) < · · · < span(ek). As span(e1) <

span(e2) < span(ek) there exists a vertex w1 ∈ {u1, v1} and a vertex

w2 ∈ {uk, vk} such that span(w1) < span(e2) < span(wk). We can now

apply Observation 3.2.1 to conclude that w1 and wk are in different con-

nected components of G − (N [u2] ∪ N [v2]). But this is a contradiction

as in any cycle of order greater than 3, it is not possible to remove the

closed neighbourhoods of two adjacent vertices to obtain a disconnected

graph.

Let Wn+1,d denote the class of triangle-free graphs consisting of a cycle

on n vertices and a central vertex of degree d where n ≥ 4 and d ≥ 2. In

other words, a graph in the class Wn+1,d is obtained by taking a wheel

on n + 1 vertices and deleting n − d edges incident to its central vertex

in such a way that it becomes triangle-free (and the central vertex ends

up having degree d).

Proposition 3.2.2. Let R be any 2-exactly stabbed rectangle intersection

representation of a graph G ∈ Wn+1,d with central vertex v. Then the
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number of bridge edges incident to v is d− 1. Moreover, if d ≥ 3 and uv

be an edge such that u, v have a common stab, then span(v) ⊂ span(u).

Proof. Consider an arbitrary 2-exactly stabbed rectangle intersection rep-

resentation R of G. Let

C = w0w1 . . . wn−2

be the cycle obtained by removing the central vertex v from G and

let u0, u1, . . . , ud−1 be the neighbours of v. We shall assume with-

out loss of generality that u0 = wj0 , u2 = wj1 , . . . , ud−1 = wjd−1
,

where j0 < j1 < . . . < jd−1. For 0 ≤ i < d − 1, let Pi de-

note the path ui = wjiwji+1 . . . wji+1
= ui+1 and let Pd−1 be the path

ud−1 = wjd−1
wjd−1+1 . . . wn−2w0w1 . . . wj0 = u0. Moreover, let Ci denote

the cycle {vui} ∪ Pi ∪ {ui+1v} (here and in the following, we consider

indices of uis, Pis and Cis to be modulo d).

Notice that each of C,C0, C1, . . . , Cd−1 contain exactly two bridge

edges due to Proposition 3.2.1. Let us first suppose that for some

i ∈ {0, 1, . . . , d − 1}, the two bridge edges of Ci are both edges of Pi.

Then these two edges are exactly the two bridge edges of C, implying

that none of the paths Pj, for j 6= i, contain any bridge edges. This

means that the two bridge edges of Ci+1 are vui and vui+1. Thus vui is

a third bridge edge in Ci other than the two bridge edges in Pi, which is

a contradiction. So we can assume that there is at most one bridge edge

in Pi, for each i.

As C has exactly two bridge edges, it follows that there are exactly

two values in {0, 1, . . . , d− 1}, say t and t′, such that Pt and Pt′ contain

a bridge edge each. This implies that for i ∈ {0, 1, . . . , d− 1} \ {t, t′}, the

edges vui and vui+1 are the two bridge edges in Ci. Now if t − t′ 6= ±1,

then by our previous observation, both vut and vut+1 must be bridge

edges, which is a contradiction as we would then have three bridge edges

in Ct. Therefore, without loss of generality we assume that t = 0 and
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t′ = 1. If d = 2, then since C0 and C1 both contain exactly two bridge

edges, it follows that one of vu0, vu1 is a bridge edge and the other is not.

If d > 2, then vui is a bridge edge, for all i 6= 1, as it belongs to some

Ci 6= C0, C1. Moreover, vu1 is not a bridge edge, as otherwise, the cycles

C0 and C1 will have more than two bridge edges. Therefore, for any value

of d ≥ 2, all but one of the edges incident on v are bridge edges. This

proves the first part of the statement of the proposition.

We now prove the next part of the statement of the proposition. When

d ≥ 3, we can assume by our previous observations that P0, P1 contain

one bridge edge each, Pi, for i /∈ {0, 1}, does not contain any bridge edge,

and that vu1 is the only edge incident on v that is not a bridge edge.

We claim that span(v) ⊂ span(u1). Without loss of generality let v, and

therefore u1, be on the bottom stab line. Then u0, u2 are on the top stab

line and thus span(u0) ∩ span(u2) = ∅ as they are non-adjacent. Let us

assume by symmetry that span(u0) < span(u2). Since v is a neighbour

of both u0 and u2, [x+
u0
, x−u2 ] ⊆ span(v).

Notice that there are no bridge edges in the path P = P2∪P3∪· · ·∪Pd−1.

As u0, u2 ∈ V (P ), all the vertices of P are on the top stab line. Let

P ′ = P −{u0, u2}. Since span(P ) is an interval, we have that [x+
u0
, x−u2 ] ⊆

span(V (P ′)).

Let ww′ and zz′ be the bridge edges on P0 and P1 respectively, where

w, z, u0, u2 are on the top stab line and w′, z′, u1, v are on the bottom stab

line. Let P ′0 be the path P0 − {u0, u1} and P ′1 the path P1 − {u1, u2}. As

the vertices of P ′0 are non-adjacent to the vertices in V (P ′)∪{v}, we can

conclude that span(V (P ′0))∩ [x+
u0
, x−u2 ] = ∅. As there is a neighbour of u0

on P ′0, span(V (P ′0)) intersects span(u0), leading us to the conclusion that

span(V (P ′0)) < [x+
u0
, x−u2 ]. Since at least one of w,w′ is on P ′0, this means

that span(ww′) < [x+
u0
, x−u2 ]. With the same kind of arguments, we can

also deduce that [x+
u0
, x−u2 ] < span(V (P ′1)) and that [x+

u0
, x−u2 ] < span(zz′).

By Observation 3.2.3, we know that the spans of any two bridge edges of

G are disjoint. Since it is clear that x+
u0
∈ span(vu0) and x−u2 ∈ span(vu2),
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Figure 3.2.1: A 2-exactly stabbed rectangle intersection representation
of (3, 4)-grid graph.

we now have span(ww′) < span(vu0) < span(vu2) < span(zz′). As

span(ww′) < span(vu0), there exists a vertex w′′ ∈ {w,w′} such that

span(w′′) < span(vu0). Let S = {u ∈ V (G) : span(u) ∩ span(vu0) 6= ∅}.
Observe that S ⊆ N [v]∪N [u0]. Now, by Observation 3.2.1, w′′ and u2 are

in two connected components of G−S (note that span(vu0) < span(u2)).

This implies that u1 ∈ S, as otherwise, the path between w′′ and u2 in

P0 ∪ P1 exists also in G− S. Therefore, span(u1) ∩ span(vu0) 6= ∅.
Using the same kind of reasoning for the bridge edges vu2 and zz′, we

can conclude that span(u1)∩span(vu2) 6= ∅. Together, we get [x+
u0
, x−u2 ] ⊆

span(u1). Recall that [x+
u0
, x−u2 ] ⊆ span(v). As u1 and v are both on the

bottom stab line and because u0, u2 ∈ N(v) \ N(u1), we can conclude

that y+
u1
< y+

v . Now suppose that x−v ≤ x−u1 . Let a be the neighbour

of u1 on P ′0. As span(V (P ′0)) < [x+
u0
, x−u2 ], we have span(a) < [x+

u0
, x−u2 ].

Since ra intersects ru1 , it then follows that ra also intersects rv. But this

contradicts the fact that a and v are nonadjacent. Therefore, we have

x−u1 < x−v . Arguing symmetrically, we can show that x+
u1
> x+

v . Thus

span(v) ⊂ span(u1).

The (h,w)-grid is the undirected graph G with V (G) = {(x, y) : x, y ∈
Z, 1 ≤ x ≤ h, 1 ≤ y ≤ w} and E(G) = {(u, v)(x, y) : |u−x|+ |v−y| = 1}.

Lemma 3.2.2. The class of (I,P)-graphs is a proper subset of 2-ESRIG.

Proof. Note that an (I,P)-graph is a 2-ESRIG by definition.
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Let H be the (3, 4)-grid as shown in Figure 3.2.1(a). There is a 2-

exactly stabbed rectangle intersection representation of H as shown in

Figure 3.2.1(b). Thus we will be done if we can show that H is not an

(I,P)-graph.

Suppose for the sake of contradiction that there is an (I,P)-

representation R of H. Observe that both H − {u4, u5, u6} and H −
{u1, u9, u10} are graphs that belong to W9,4 having central vertices v1 and

v2 respectively. Hence, by Proposition 3.2.2, in R, for each i ∈ {1, 2},
there is exactly one vertex wi ∈ N(vi) that is on the same stab line as vi

and further, span(vi) ⊂ span(wi). Thus, if v1 and v2 are on different stab

lines in R, then for some i ∈ {1, 2}, vi and wi are on the bottom stab

line. As span(vi) ⊂ span(wi), we have a contradiction to the fact that

Rb is a proper set of intervals. Therefore, v1 and v2 have a common stab.

Then by definition of w1 and w2, we have w1 = v2 and w2 = v1, implying

that span(v1) ⊂ span(v2) ⊂ span(v1), which is again a contradiction.

Lemma 3.2.3. (I,U)-graphs = (I, E)-graphs = (I,P)-graphs.

Proof. Let R be an (I,P)-representation of G having Vb as its set of

vertices on the bottom stab line. Thus Rb is a proper interval representa-

tion of G[Vb]. Assume that a = min span(Vb) and b = max span(Vb).

Then, it can be seen that there exists a strictly increasing function

f : [a, b] → [a, b′] for some b′ ∈ R such that f(x+
u ) − f(x−u ) = 1 for

all u ∈ Vb. Such an f could be constructed by induction on |Vb| as fol-

lows. Note that since Rb is a proper interval representation, there are no

two distinct vertices u, v ∈ Vb such that x−u = x−v or x+
u = x+

v . If |Vb| = 1,

then there exists a single vertex u ∈ Vb such that x−u = a and x+
u = b. In

this case, define f : [a, b]→ [a, a+1] to be an arbitrary strictly increasing

function. Suppose that |Vb| > 1. Let v be the vertex in Vb such that

x−v = a and let V ′b = Vb \ {v}. Further, let c = min span(V ′b ). Clearly,

a < c ≤ b. By the inductive hypothesis applied on the set V ′b and interval

[c, b], there exists a strictly increasing function f ′ : [c, b]→ [c, b′] for some
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b′ ∈ R such that for every u ∈ V ′b , f ′(x+
u ) − f ′(x−u ) = 1. If x+

v ≥ c, then

define f as follows. Let f1 : [a, c]→ [f ′(x+
v )−1, c] be an arbitrary strictly

increasing function (notice that f ′(x+
v )− 1 < c). Define

f(x) =

{
a+ f1(x)− (f ′(x+

v )− 1) a ≤ x < c

f ′(x)− (f ′(x+
v )− 1− a) c ≤ x ≤ b

If x+
v < c, then define f as follows. Let f1 : [a, x+

v ] → [a, a + 1] be an

arbitrary strictly increasing function. Define

f(x) =


f1(x) a ≤ x ≤ x+

v

x− (x+
v − a− 1) x+

v < x < c

f ′(x)− (x+
v − a− 1) c ≤ x ≤ b

It can be verified that f satisfies the necessary conditions.

Now we extend the function f to the whole of the real line by defining

f̂(x) =


x if x < a,

f(x) if a ≤ x ≤ b,

x+ (b′ − b) if x > b.

For each vertex u ∈ V (G), replace the rectangle ru = [x−u , x
+
u ]×[y−u , y

+
u ]

from the representation R by the rectangle r′u = [f̂(x−u ), f̂(x+
u )]× [y−u , y

+
u ]

to obtain an (I,U)-representation R′ of G.

From the proof of Lemma 3.2.3, it is clear that the left and right edges

of the rectangles of R′ are in the same order as they are in R. Let G be

a (P ,P)-graph and R be a (P ,P)-representation of G. The construction

procedure described in Lemma 3.2.3 when applied onR gives us a (P ,U)-

representation R′ of G. This gives us the following lemma.

Lemma 3.2.4. (P ,U)-graphs = (P , E)-graphs = (P ,P)-graphs.

When we are given an (E , E)-representation R of a graph G, we can al-
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Figure 3.2.2: (I,P)-representation of (3, 3)-grid graph.

ways scale the whole representation horizontally by an appropriate factor

so that the intervals of Rb becomes unit intervals. Note that the intervals

of Rt will all continue to be of the same length even after this operation.

We thus have the following lemma.

Lemma 3.2.5. (E ,U)-graphs = (E , E)-graphs.

By definition, a (P ,P)-graph is an (I,P)-graph. Consider the (3, 3)-

grid graph H shown in Figure 3.2.2(a). Clearly, there is an (I,P)-

representation of H (Figure 3.2.2(b)). Note that H is a graph belonging

to the W9,4 class. By Proposition 3.2.2, in any 2-exactly stabbed rect-

angle intersection representation of H, there is a vertex w ∈ N(v) such

that w, v have a common stab and span(v) ⊂ span(w). Hence, H is not

a (P ,P)-graph. So we have the following lemma.

Lemma 3.2.6. The class of (P ,P)-graphs is a proper subset of the class

of (I,P)-graphs.

Now we will show in Lemma 3.2.8 that the class of (E , E)-graphs is a

proper subset of the class of (P ,P)-graphs. Essentially, we shall show

that the graph shown in Figure 3.2.4(a) is a (P ,P)-graph (representation

given in Figure 3.2.4(b)) but not an (E , E)-graph. To prove Lemma 3.2.8,

we need some observations and propositions.

The following observation can be observed to be true along the lines of

Observation 3.2.1.
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Observation 3.2.4. Let R be a (P ,P)-representation of a triangle free

graph G. Let e = uv be a bridge edge and a, b ∈ V (G) such that span(a) <

span(uv) < span(b). Then a and b are in different connected components

of G− {u, v}.

Observation 3.2.5. Let C be the cycle v0v1 · · · vn−1v0, where n ≥ 4, and

let R be a 2-exactly stabbed rectangle intersection representation of C. If

for some i, j ∈ {0, 1, . . . , n − 1} and i 6= j, vivi+1 and vjvj+1 are both

bridge edges in R (subscripts modulo n), then span(x) ∩ span(Y ) 6= ∅
for each x ∈ X and span(y) ∩ span(X) 6= ∅ for each y ∈ Y , where

X = {vi+1, vi+2, . . . , vj} and Y = {vj+1, vj+2, . . . , vi}.

Proof. By Proposition 3.2.1, vivi+1 and vjvj+1 are the only two bridge

edges in C. Therefore, all the vertices in X are on one stab line and all

the vertices in Y are on the other stab line. By Observation 3.2.3, we

shall assume without loss of generality that span(vivi+1) < span(vjvj+1).

Clearly, there exists u ∈ {vj, vj+1} such that span(vivi+1) < span(u).

Suppose for the sake of contradiction that there is a vertex y ∈ Y such

that span(y) < span(X). Then, we have span(y) < span(vivi+1) <

span(u), which implies by Observation 3.2.1 that y and u lie in different

components of G−(N [vi]∪N [vi+1]). This is a contradiction as one cannot

remove the endpoints of any edge and their neighbours to disconnect

C. Repeating the same argument, we get that there exists no vertex

y ∈ Y such that span(X) < span(y) and that no vertex x ∈ X can

have span(x) < span(Y ) or span(Y ) < span(x). This completes the

proof.

Consider the cycle C = v0v1 · · · vn−1v0 on n ≥ 4 vertices. Now add a new

vertex w adjacent only to v0 to obtain the graph Cn,1.

Proposition 3.2.3. Let R be a (P ,P)-representation of Cn,1. Then at

least one of v0v1 and v0vn−1 must be a bridge edge.
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Proof. Suppose that neither of v0v1 or v0vn−1 is a bridge edge and without

loss of generality assume that all of v0, v1, vn−1 are on the top stab line. As

a proper interval graph cannot have a K1,3 as an induced subgraph, the

edge v0w is a bridge edge with w on the bottom stab line. Moreover, by

Proposition 3.2.1, C has exactly two bridge edges. Let the bridge edges

in C be z1w1 and z2w2. As neither of the two edges v0v1, v0vn−1 of C that

are incident on v0 are bridge edges, we have that v0 /∈ {z1, z2, w1, w2}.
From Observation 3.2.3, we know that the spans of the bridge edges

v0w, z1w1 and z2w2 are pairwise disjoint. Let e1, e2, e3 be the edges in

{v0w, z1w1, z2w2} such that span(e1) < span(e2) < span(e3). Clearly,

there is an endpoint a of e1 and an endpoint b of e3 such that span(a) <

span(e2) < span(b). By Observation 3.2.4, we can infer that a and b

become disconnected if the two endpoints of e2 are removed from G. But

this is a contradiction as the graph G cannot be disconnected by removing

the two endpoints of any of the edges e1, e2 or e3. Therefore, at least one

of v0v1 or v0vn−1 must be a bridge edge.

For a graph G, let α(G) denote the independence number, that is, the

cardinality of the maximum independent set of G. For an interval I, let

|I| denote the length of the interval.

Observation 3.2.6. Let R be an (E , E)-representation of a graph G. Let

`1, `2 be the two stab lines in R and let l1, l2 be the lengths of the spans

of each vertex on `1 and `2 respectively. Let G1 be a connected subgraph

of G such that all vertices in V (G1) are on `1. Let G2 be the subgraph

induced in G by the set {w ∈ V (G) : span(w) ∩ span(V (G1)) 6= ∅ and w

is on `2}. Then l1 · |V (G1)| > l2 · (α(G2)− 2).

Proof. Note that span(V (G1)) is an interval since G1 is connected. As

the span of every vertex in G1 is l1, we have that |span(V (G1))| ≤ l1 ·
|V (G1)|. Let S = {w1, w2, . . . , wα(G2)} be a maximum independent set of

G2 such that span(w1) < span(w2) < · · · < span(wα(G2)). Hence, we have

(x−wα(G2)
−x+

w1
) > l2 · (α(G2)−2). Since span(V (G1)) intersects with both
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Figure 3.2.3: (a) The graph F , and (b) an (E , E)-representation of F .

span(w1) and span(wα(G2)), we must have |span(V (G1))| > l2·(α(G2)−2).

This completes the proof.

The observations and propositions proved above are enough to show

that the class of (U ,U)-graphs is properly contained in the class of (E , E)-

graphs. By definition, a (U ,U)-graph is an (E , E)-graph. We show that

the graph F shown in Figure 3.2.3(a) is not a (U ,U)-graph.

Proposition 3.2.4. Let R be an (E , E)-representation of F having stab

lines `1 and `2. Further, let l1 and l2 be the lengths of the spans of the

vertices on `1 and `2 respectively in R. If b is on `1, then l1 > l2.

Proof. Since each of F − {y, z}, F − {x, z}, F − {x, y} is isomorphic

to C10,1, we know by Proposition 3.2.3 that at least one edge in each

of {v1a, ab}, {ab, bc} and {bc, cv7} is a bridge edge in R. By Proposi-

tion 3.2.1 applied to the cycle C = F − {x, y, z}, it then follows that

there are exactly two bridge edges e1 ∈ {v1a, ab} and e2 ∈ {bc, cv7} in C

and that {e1, e2} 6= {v1a, cv7}. Let P1, P2 be the two paths that form the

components in the graph obtained by removing e1 and e2 from C, where

b ∈ V (P1). Observe that |V (P1)| ≤ 2 and that α(P2) ≥ 4. By Obser-

vation 3.2.5, for each u ∈ V (P2), we have span(u) ∩ span(V (P1)) 6= ∅.
It is clear by Proposition 3.2.1 that in R, the vertices of V (P1) are on

the stab line `1 (recall that b is on `1) while the vertices of V (P2) are on

the stab line `2. Then by Observation 3.2.6 applied to P1, we have that

l1 · |V (P1)| > l2 · (α(P2)− 2), which gives l1 > l2.
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Figure 3.2.4: (a) The graph H, and (b) a (P ,P)-representation of H.

It is clear from Proposition 3.2.4 that the graph F has no (U ,U)-

representation. On the other hand, there is an (E , E)-representation of F

as shown in Figure 3.2.3(b). Hence, we have the following lemma.

Lemma 3.2.7. The class of (U ,U)-graphs is a proper subset of the class

of (E , E)-graphs.

Next, we show that the class of (E , E)-graphs is a proper subset of

the class of (P ,P)-graphs. By definition, an (E , E)-graph is a (P ,P)-

graph. Let H be the graph depicted in Figure 3.2.4(a). As shown in

Figure 3.2.4(b), there is a (P ,P)-representation of H. We shall show

that H cannot have any (E , E)-representation.

First, we prove the following observation about the graph H.

Proposition 3.2.5. In any (P ,P)-representation of H, bc is a bridge

edge.

Proof. Suppose for the sake of contradiction that there is a (P ,P)-

representation R of H in which bc is not a bridge edge. Since

the subgraph of H induced by the set {a, v1, v2, . . . , v7, b, c, w1} is

isomorphic to C10,1, by Proposition 3.2.3, the edge ba must be a

bridge edge in R. The same argument applied on the subgraphs

in H induced by {b, w1, w2, . . . , w7, c, d, v7}, {b, w1, w2, . . . , w7, c, d, a},
{a, v1, v2, . . . , v7, b, c, d} gives that cd, bw1, cv7 respectively are bridge

edges in R. Without loss of generality assume that both b and c

are on the bottom stab line in R and that x−c < x−b < x+
c < x+

b .

By Observation 3.2.3, we have that span(cv7) ∩ span(cd) = ∅ and

118



span(bw1) ∩ span(ba) = ∅. Moreover, if for any e ∈ {cv7, cd} and

e′ ∈ {bw1, ba}, we have span(e′) < span(e), then span(e′)∩ span(bc) 6= ∅
and span(e)∩span(bc) 6= ∅, which is a contradiction to Observation 3.2.2.

Therefore, there exist e ∈ {cv7, cd} and e1, e2 ∈ {bw1, ba} such that

span(e) < span(e1) < span(e2). Then there is an endpoint u of e and

an endpoint u′ of e2 such that span(u) < span(e1) < span(u′). Clearly,

u ∈ {c, d, v7}, u′ ∈ {a, w1} and e1 = bu′′, where {u′′} = {a, w1}\{u′}. By

Observation 3.2.4, u and u′ must lie in different connected components in

H − {b, u′′}, a contradiction. This completes the proof of the claim.

Proposition 3.2.6. The graph H has no (E , E)-representation.

Proof. Suppose for the sake of contradiction that there is an (E , E)-

representation R of the graph H. Let lt, lb be the lengths of the

spans of the vertices on the top and bottom stab lines respectively in

R. Let H1 and H2 be the subgraphs induced in H by the vertices in

{x, a, b, c, d, v1, v2, . . . , v7, w1} and {a, b, c, d, y, w1, w2, . . . , w7, v7} respec-

tively. Clearly, H1 and H2 are both isomorphic to the graph F shown in

Figure 3.2.3(a). By Proposition 3.2.5, we can assume by symmetry that

b is on the top stab line and c is on the bottom stab line in R. We then

have |span(b)| = lt and |span(c)| = lb. By Proposition 3.2.4 applied to

H1, we get that lt > lb and by applying the same proposition to H2, we

get that lb > lt. This contradiction completes the proof.

The graph H has a (P ,P)-representation as shown in Figure 3.2.4(b).

From Proposition 3.2.6, we therefore have the following lemma.

Lemma 3.2.8. The class of (E , E)-graphs is a proper subset of the class

of (P ,P)-graphs.

Finally, we are ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Observe from the definitions that the class 2-

SUIG is the same as the class of (U ,U)-graphs. Then the proof of Theo-

rem 3.2.1 follows from Lemmas 3.2.1–3.2.8.
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3.3 Recognition algorithm

In this section, we prove the following theorem.

Theorem 3.3.1. Let G be a triangle-free graph. There is an O(|V (G)|)
time algorithm to decide if G is a (P ,P)-graph.

An LL-drawing of a planar graph G is a straight line planar embedding

of G such that the point corresponding to each vertex of G lies on one of

two given horizontal lines. A planar graph G is an LL-graph if G has an

LL-drawing.

Observation 3.3.1. A graph G is an LL-graph if and only if there exists

a partition of V (G) into two ordered sets A = {a1, a2, . . . , ak} and B =

{b1, b2, . . . , bt} such that:

(a) there does not exist 1 ≤ i < j ≤ k and 1 ≤ i′ < j′ ≤ t with the

property that aibj′ , ajbi′ ∈ E(G), and

(b) for any ai, N(ai) ∩ A ⊆ {ai−1, ai+1} and for any bi, N(bi) ∩ B ⊆
{bi−1, bi+1}.

Indeed, the two ordered sets A and B referred to in the above obser-

vation consist of the vertices lying on each of the two horizontal lines

in an LL-drawing of the graph, sorted according to their increasing X-

coordinate. We show that all LL-graphs are (P ,P)-graphs and that all

triangle-free (P ,P)-graphs are LL-graphs.

Lemma 3.3.1. If G is an LL-graph then G is a (P ,P)-graph.

Proof. Let (A = {a1, a2, . . . , as}, B = {b1, b2, . . . , bt}) be the partition

of V (G) as given by Observation 3.3.1. For any aj ∈ A, define l(aj) =

min{i : bi ∈ N(aj)} and r(aj) = max{i : bi ∈ N(aj)} if N(aj)∩B 6= ∅ and

l(aj) = r(aj) = 0 otherwise. Then by Observation 3.3.1, for any ai, aj
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such that i < j, both having neighbours in B, we have r(ai) ≤ l(aj) and

aiaj is an edge only if |i− j| = 1 .

Let us define a (P ,P)-representation R = {[x−u , x+
u ] × [y−u , y

+
u ]}u∈V (G)

having stab lines y = 0 and y = t+ 1 as follows. For each bi, we set

x−bi = i, x+
bi

=

{
i+ 1

2
if bibi+1 /∈ E(G)

i+ 1 otherwise

y−bi = 0, y+
bi

=

{
i if N(bi) ∩ A 6= ∅
0 otherwise

Let ε = 1
2|V (G)| and

x−a1 = 1

x+
a1

=

{
r(a1) + ε if N(a1) ∩B 6= ∅
1 + ε

2
otherwise

y−a1 =

{
l(a1) if N(a1) ∩B 6= ∅
t+ 1 otherwise

y+
a1

= t+ 1

For each ai, i > 1, we inductively define

x−ai =

{
x+
ai−1

if ai−1ai ∈ E(G)

x+
ai−1

+ ε
2

otherwise

x+
ai

=

{
r(ai) + i · ε if N(ai) ∩B 6= ∅
x−ai + ε

2
otherwise

y−ai =

{
l(ai) if N(ai) ∩B 6= ∅
t+ 1 otherwise

,

y+
ai

= t+ 1
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Observe that R is a valid (P ,P)-representation of G. A proof is given

below for the sake of completeness.

For each ai ∈ A, define Pi = {l : l < i and N(al) ∩B 6= ∅}.

Claim 1. Let ai ∈ A. If Pi 6= ∅, then x−ai ≤ x+
aj

+ (i − j − 1
2
) · ε, where

j = maxPi. If Pi = ∅, then x−ai ≤ 1 + (i− 1) · ε.

First, suppose that Pi 6= ∅. Then x−aj+1
≤ x+

aj
+ ε

2
⇒ x+

aj+1
≤ x+

aj
+ ε⇒

x+
aj+2

≤ x+
aj

+ 2 · ε ⇒ · · · ⇒ x+
ai−1
≤ x+

aj
+ (i − 1 − j) · ε ⇒ x−ai ≤

x+
aj

+ (i − j − 1
2
) · ε. Next, suppose that Pi = ∅. Then x−a1 = 1 and

x+
a1
≤ 1 + ε

2
⇒ x−a2 ≤ 1 + ε⇒ · · · ⇒ x−ai ≤ 1 + (i− 1) · ε. This proves the

claim.

First, let us prove thatR is a valid rectangle intersection representation

by showing that for every u ∈ V (G), x+
u ≥ x−u and y+

u ≥ y−u . This is

clearly true for u ∈ B. Also, for each u ∈ A, we have y+
u ≥ y−u . Now

let us prove that for each ai ∈ A, we have x+
ai
> x−ai . Clearly, this is

true for a1. Suppose that for some i > 1, we have x+
ai
≤ x−ai . Clearly,

N(ai) ∩ B 6= ∅. Then x+
ai

= r(ai) + i · ε. Suppose that Pi 6= ∅. Let

j = maxPi. Then, x+
aj

= r(aj) + j · ε. Using Claim 1, we now get

x+
aj

+ (i− j− 1
2
) · ε ≥ x−ai ≥ x+

ai
= r(ai) + i · ε⇒ x+

aj
≥ r(ai) + (j+ 1

2
) · ε ≥

r(aj) + j · ε + 1
2
· ε, which is a contradiction (here we use the fact that

r(aj) ≤ l(ai) ≤ r(ai) by Observation 3.3.1). If Pi = ∅, then by Claim 1,

we have 1 + (i − 1) · ε ≥ x−ai ≥ x+
ai

= r(ai) + i · ε. This implies that

r(ai) ≤ 1− ε, which is a contradiction.

The arguments above show that R is a 2-exactly stabbed rectangle

intersection representation with stab lines y = 0 and y = t+ 1. It is easy

to see that there does not exist u, v ∈ B such that span(u) ⊆ span(v).

Suppose that there exist ai, aj ∈ A such that span(aj) ⊆ span(ai). Then

x−ai ≤ x−aj < x+
aj
≤ x+

ai
. If i > j, then we have x−ai ≥ x+

ai−1
≥ x−ai−1

≥
x+
ai−2
≥ · · · ≥ x+

aj
, which is a contradiction. If i < j, then we have

x−aj ≥ x+
aj−1
≥ x−aj−1

≥ x+
aj−2
≥ · · · ≥ x+

ai
, which is again a contradiction.

Therefore, R is a (P ,P)-representation.
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It is easy to see using Observation 3.3.1 that for u, v ∈ B and for

u, v ∈ A, ru ∩ rv 6= ∅ if and only if uv ∈ E(G). Let ai ∈ A and bk ∈ B.

Suppose that aibk ∈ E(G). Then l(ai) ≤ k ≤ r(ai). Suppose that

Pi 6= ∅. Let j = maxPi. Then x+
aj

= r(aj) + j · ε. By Claim 1, x−ai ≤
x+
aj

+(i−j− 1
2
) ·ε = r(aj)+(i− 1

2
) ·ε. By Observation 3.3.1, r(aj) ≤ l(ai).

So, by our choice of ε, we get x−ai ≤ l(aj) + 1
2
≤ k + 1

2
. If Pi = ∅, then by

Claim 1, we have x−ai ≤ 1 + (i− 1) · ε, which again gives us x−ai ≤ k + 1
2
.

On the other hand, x−bk = k and x+
bk
≥ k + 1

2
. As x+

ai
= r(ai) + i · ε ≥ k,

we have that span(ai) ∩ span(bk) 6= ∅. Observe that [y−bk , y
+
bk

] = [0, k],

y+
ai

= t+ 1 and y−ai ≤ k. We therefore conclude that rai ∩ rbk 6= ∅.
We now show that if uv /∈ E(G), then ru ∩ rv = ∅. It is obvious from

the definition of R and Observation 3.3.1 that this holds if u, v ∈ A or

u, v ∈ B. Suppose that ai ∈ A and bk ∈ B such that aibk /∈ E(G). If

N(ai)∩B = ∅, then y−ai = t+ 1 while y+
bk
≤ t, implying that rai ∩ rbk = ∅.

Similarly, if N(bk) ∩ A = ∅, then y+
bk

= 0 while y−ai ≥ 1, again implying

that rai∩rbk = ∅. So let us assume that N(ai)∩B 6= ∅ and N(bk)∩A 6= ∅.
Then by Observation 3.3.1, we have that either r(ai) < k or l(ai) > k. In

the former case, we have x+
ai

= r(ai) + i · ε < k = x−bk (by our choice of ε),

and in the latter case, we have y−ai = l(ai) > k and y+
bk

= k. Therefore, in

both cases, we get rai ∩ rbk = ∅.
This shows that R is a valid (P ,P)-representation of G.

Lemma 3.3.2. If a triangle-free graph G is a (P ,P)-graph then G is an

LL-graph.

Proof. Let R = {ru = [x−u , x
+
u ] × [y−u , y

+
u ]}u∈V (G) be a (P ,P)-

representation of G having stab lines y = 0 and y = 1. Let A = {u : ru

intersects the stab line y = 1} and B = V (G)\A. Clearly, the rectangles

corresponding to each vertex in B intersects the stab line y = 0.

Let s = |A| and t = |B|. Also let a1, a2, . . . , as be the vertices of A

and let b1, b2, . . . , bt be the vertices of B, such that for 1 ≤ i < j ≤ s,

x−ai ≤ x−aj and for 1 ≤ i < j ≤ t, x−bi ≤ x−bj . Observe that the sets A and
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B also satisfy all conditions of Observation 3.3.1, proving that G is an

LL-graph. A proof is given below for sake of completeness.

Suppose that the sets A and B with these orderings on their vertices

violate condition (a) of Observation 3.3.1. Then there exist i, j, i′, j′ such

that 1 ≤ i < j ≤ s and 1 ≤ i′ < j′ ≤ t and aibj′ , ajbi′ ∈ E(G). Therefore,

rai ∩ rbj′ 6= ∅, implying that x+
ai
≥ x−bj′ . Similarly, we have x+

bi′
≥ x−aj . As

x−ai ≤ x−aj , x
−
bi′
≤ x−bj′ and R is a (P ,P)-representation, we have x+

ai
≤ x+

aj

and x+
bi′
≤ x+

bj′
.

Combining with previous inequalities, we now get x+
ai
≥ x−bj′ ≥

x−bi′ and x+
bi′
≥ x−aj ≥ x−ai . This implies that the intervals [x−ai , x

+
ai

] and

[x−bi′ , x
+
bi′

] intersect. Similarly, we get x+
aj
≥ x+

ai
≥ x−bj′ and x+

bj′
≥ x+

bi′
≥

x−aj which implies that the intervals [x−aj , x
+
aj

] and [x−bj′ , x
+
bj′

] intersect.

Now let us consider the case when y+
bi′
≤ y+

bj′
(the case when y+

bi′
> y+

bj′
is

symmetric and will not be discussed). As rbi′ ∩raj 6= ∅, we have y+
bi′
≥ y−aj

and therefore y+
bj′
≥ y−aj . Combined with our previous observation that

[x−aj , x
+
aj

] ∩ [x−bj′ , x
+
bj′

] 6= ∅, this implies that raj ∩ rbj′ 6= ∅ (recall that

0 ∈ [y−bj′ , y
+
bj′

] and 1 ∈ [y−aj , y
+
aj

]). Since this means that ajbj′ ∈ E(G), we

have aiaj, bi′bj′ /∈ E(G) as otherwise, either aiajbj′ or bi′bj′aj will be a

triangle in G.

Therefore, we can conclude that x+
ai
< x−aj and x+

bi′
< x−bj′ . Combining

these with our earlier observation that x+
ai
≥ x−bj′ , we get x−aj > x+

bi′
, which

contradicts the fact that x+
bi′
≥ x−aj . This shows that the sets A and B do

not violate condition (a) of Observation 3.3.1.

Now suppose that aiaj ∈ E(G), where i < j, then x+
ai
≥ x−aj . Since

R is a (P ,P)-representation, we then have that x−ai ≤ x−ai+1
≤ · · · ≤

x−aj ≤ x+
ai
≤ x+

ai+1
≤ · · · ≤ x+

aj
. Therefore, the rectangles rai , rai+1

, . . . , raj
will intersect pairwise, implying that {ai, ai+1, . . . , aj} induces a complete

graph in G. Since G is triangle-free, we can conclude that j = i+1. It can

be similarly proven that if bibj ∈ E(G), where i < j, we have j = i + 1.

Therefore, the setsA andB also satisfy condition (b) of Observation 3.3.1,

proving that G is an LL-graph.
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Now we are ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Due to Lemma 3.3.1 and Lemma 3.3.2, we can

infer that a triangle-free graph G is a (P ,P)-graph if and only if G is an

LL-graph. Cornelsen, Schank and Wagner [61] proved that given a graph

G, there is an O(|V (G)|) time algorithm to decide if G is an LL-graph.

Combining this with Lemma 3.3.1 and 3.3.2, we are done.

3.4 Coloring 2-SRIGs

In this section, we prove the following two propositions.

Proposition 3.4.1. Triangle-free 2-SRIGs are 3-colorable.

Proposition 3.4.2. For every natural number c, there exists a

polynomial-time algorithm that decides whether an input 2-SRIG graph

is c-colorable.

These two propositions follow directly from a few known results making

the proofs rather short. We will first prove Proposition 3.4.1.

Proof of Proposition 3.4.1. Let H be a triangle-free 2-SRIG. First, we

will show that H is a planar graph.

Observe that it is possible to find 2-stabbed rectangle intersection rep-

resentation R of H such that given any two vertices u, v ∈ V (H), rv \ ru
is nonempty and connected. Thus H is a planar graph due to Perepelitsa

(Theorem 7 [134]).

The Grötzsch’s Theorem [151] says that every triangle-free planar

graph is 3-colorable. Moreover, we can get such a coloring in O(|V (H)|)
time due to Dvořák, Kawarabayashi and Thomas [70].

Next we prove Proposition 3.4.2.

Proof of Proposition 3.4.2. To prove this, observe that when a 2-SRIG

graph G is c-colorable, the treewidth [63] of G is at most 2c. This
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can be seen as follows. Consider a 2-stabbed rectangle intersection rep-

resentation R of G. Let the vertices of G be v1, v2, . . . , vn such that

x−v1 ≤ x−v2 ≤ · · · ≤ x−vn . For 1 ≤ i ≤ n, define Xi = {vj : x−vi ∈ span(vj)}.
It is easy to see that {Xi}1≤i≤n is a path decomposition of G (where the

underlying path is X1-X2-· · · -Xn). Notice that for each i, the vertices of

Xi that are on one stab line induce a complete graph in G. Since G is

c-colorable, this implies that Xi contains at most c vertices that are on

one stab line. Therefore, |Xi| ≤ 2c, implying that the Xi-s form a path

decomposition of G having width at most 2c. Thus the pathwidth, and

hence also the treewidth, of G is at most 2c. Now, for every constant

c, there is a polynomial-time algorithm Ac that checks if an input graph

G has treewidth at most 2c and constructs a tree decomposition of G

width at most 2c if it exists (see Theorem 7.17 in [63]). For a natural

number c, let Bc be the algorithm that does the following. The algorithm

takes a graph G as input and first runs Ac on G. It returns a “No” if Ac
concludes that the treewidth of G is greater than 2c; otherwise it runs a

standard polynomial-time dynamic programming algorithm on the tree

decomposition of G of width at most 2c constructed by Ac to decide if G

is c-colorable (see Theorem 7.9 in [63]).

3.5 NP-completeness of coloring 2-SRIGs

In this section, we prove the following theorem.

Theorem 3.5.1. The Chromatic Number problem is NP-complete for

l-row B0-VPG graphs for all l ≥ 2 even if the l-row B0-VPG representa-

tion is given, and is polynomial time solvable for l = 1.

As an immediate consequence of the above, we have the following corol-

lary.

Corollary 6. The Chromatic Number problem is NP-complete for

k-SRIGs for all k ≥ 2, even if the k-SRIG representation is given, and
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is polynomial time solvable for k = 1.

A circular arc graph is an intersection graph of arcs of a circle. Given

a circular arc graph G along with a circular arc representation C and an

integer k as input, the circular arc coloring problem is to decide

whether the chromatic number of G is at most k. The decision problem

circular arc coloring is known to be NP-complete [83]. To prove

Theorem 3.5.1, we will use a reduction from circular arc coloring

using a strategy similar to those used in [40, 53].

Let G be a circular arc graph given along with a circular arc represen-

tation C and an integer k. We describe the construction of a B0-VPG

graph HG,C,k whose chromatic number is k if and only if the chromatic

number of G is at most k.

We assume that the circular-arcs of C are drawn on the unit circle and

that no circular-arc in this representation is a point (i.e., degenerate).

The “left end-point” of a circular-arc is the first point of the arc that is

encountered during an anti-clockwise traversal of the unit circle starting

from a point not contained in the arc. The other end-point is the “right

end-point” of the arc. For a vertex v ∈ V (G), let Cv denote the circular-

arc representing v in C. Let θ1(v), θ2(v) ∈ [0, 2π) denote the angles formed

by the positive X-axis and the line segments joining the origin to the left

and right end-points of Cv respectively (i.e., the end-points of Cv are

(cos θ1, sin θ1) and (cos θ2, sin θ2)). Our plan is to “cut” the circle at the

point (1, 0) and “stretch” it onto the X-axis so that the arcs become

straight line segments lying on the X-axis. Observe that during this

procedure, the arcs in C that contain the point (1, 0) get split into two

line segments whereas every other arc becomes a line segment. Also

note that the arcs Cv that contain the point (1, 0) are exactly those for

which θ1(v) > θ2(v). Let T = {v ∈ V (G) : θ1(v) > θ2(v)}. Further, let

|T | = t and T = {u1, u2, . . . , ut}. We now formally define the B0-VPG

representation of the graph HG,C,k.
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If t > k, then we let HG,C,k be an arbitrary B0-VPG graph with

chromatic number greater than k (for example, a complete graph with

more than k vertices). So from now on, we assume that t ≤ k.

For every vertex v ∈ V (G) \ T , define the horizontal line segment

Lv = [θ1(v), θ2(v)] × {0}. For each i ∈ {1, 2, . . . , t}, define horizontal

line segments Lui = [−i, θ2(v)] × {0} and L′ui = [θ1(v), 2π + i] × {0}.
Further, define t horizontal line segments A1, A2, . . . , At, where Ai =

[−i, 2π+i]×{1} for each i ∈ {1, 2 . . . , t}. Finally, for each i ∈ {1, 2, . . . , t},
define a collection Bi of k + i − t − 1 vertical line segments each of

which is {−i} × [0, 1], and a collection B′i of k + i − t − 1 line seg-

ments each of which is {2π + i} × [0, 1]. Clearly, the line segments in

{Lv : v ∈ V (G)} ∪ (
⋃t
i=1{Lui , L′ui , Ai} ∪ Bi ∪ B′i) form a 2-row B0-VPG

representation of a graph, and this graph is what we define to be HG,C,k.

Lemma 3.5.1. The graph G is k-colorable if and only if HG,C,k is k-

colorable.

Proof. For convenience, we will call the vertices of HG,C,k by their corre-

sponding line segments. Furthermore, we will use the terms and notations

used to describe the construction of HG,C,k inside this proof as well.

Observe that if t is greater than k, then both G and HG,C,k are not

k-colorable. Thus we may assume that t ≤ k.

Claim. For each i ∈ {1, 2, . . . , t}, the line segments Lui , Ai and L′ui get

the same color in any k-coloring of HG,C,k.

We show this by induction on t−i. If t−i = 0, i.e. i = t, then Bi∪{Lui}
and Bi ∪ {Ai} form cliques of size k in HG,C,k, implying that Lui and Ai

have the same color in any k-coloring of HG,C,k. In the same way, since

B′i∪{Ai} and B′i∪{L′ui} form cliques of size k in HG,C,k, Ai and L′ui have

the same color in any k-coloring of HG,C,k. Suppose that t − i > 0, i.e.,

1 ≤ i < t. Consider any k-coloring of HG,C,k. By the induction hypothe-

sis, for each i < j ≤ t, Luj , Aj and L′uj have the same color, implying that

the vertices in the sets {Lut , Lut−1 , . . . , Lui+1
}, {Aut , Aut−1 , . . . , Aui+1

},
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and {L′ut , L′ut−1
, . . . , L′ui+1

} are all colored with the same t−i colors. Since

{Lut , Lut−1 , . . . , Lui} ∪ Bi and {At, At−1, . . . , Ai} ∪ Bi are both cliques of

size k in HG,C,k, this implies that Lui and Ai have the same color. Simi-

larly, since {At, At−1, . . . , Ai}∪B′i and {L′ut , L′ut−1
, . . . , L′ui}∪B′i are both

cliques of size k in HG,C,k, we get that L′ui and Ai have the same color.

This proves the claim.

From the claim above, it is clear that given any k-coloring of HG,C,k, one

can generate a valid k-coloring of G by giving each vertex v in V (G) \ T
the color of Lv and each vertex ui in {u1, u2, . . . , ut} the color of Lui .

Also, given a k-coloring of G, one can color the line segments Lv, for

each v ∈ V (G) \ T , with the color of v, the line segments Lui , L
′
ui

and

Ai, for each i ∈ {1, 2, . . . , t}, with the color of ui, and then color the

line segments in
⋃t
i=1 Bi ∪ B′i greedily to generate a valid k-coloring of

HG,C,k.

Now we are ready to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. Note that a 2-row B0-VPG representation for

the graph HG,C,k can be constructed in polynomial-time given a circular-

arc graph G, a circular-arc representation C of it and an integer k as

input. Lemma 3.5.1 shows that this is a polynomial-time reduction from

the circular arc coloring problem to the Chromatic Number

problem on 2-row B0-VPGs.

3.6 Concluding remarks and open problems

In this chapter, we studied different subclasses of 2-SRIG. A direction of

further research could be to investigate the subclasses of 2-SRIGs and try

to characterise these classes of graphs.

Question 3.6.1. Develop a forbidden structure characterization and/or

a polynomial-time recognition algorithm for any of the classes (I,U)-

graphs, (P ,P)-graphs, (E , E)-graphs, or (U ,U)-graphs.
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In this chapter, we studied the complexity of the Chromatic number

problem on 2-SIRGs and observed it to be NP-hard on 2-SRIGs. Observe

that the chromatic number of any 2-SRIG is at most twice its clique

number. However, this bound is not known to be tight. There exists a

class of 2-SRIGs containing graphs G with arbitrarily large clique number

satisfying the property that χ(G) = 5ω(G)
4

. To see this, consider the

following graph G which appears in [106]. Take a cycle C of five vertices.

Replace each vertex in C with a complete graph on k vertices (where k

is a positive even number) and add all possible edges between vertices

belonging to consecutive cliques. Observe that χ(G) = 5ω(G)
4

and that G

is a 2-SRIG. In fact G is also 2-row B0-VPG graph.

Question 3.6.2. Obtain tight upper bounds on the chromatic number in

terms of the clique number for 2-SRIG and its subclasses.
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Recognising trees that are 2-SUIG
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In this chapter, we study the graph class 2-SUIG introduced in Chap-

ter 3. First, we recall some definitions. A 2-stabbed unit square inter-
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section representation R of a graph G is a collection of axis-parallel unit

squares on the plane and two horizontal lines called stab lines such that

each unit square in the collection corresponds to a vertex of G, intersects

exactly one of the stab lines and two unit squares intersect if and only if

the corresponding vertices are adjacent in G. A graph G is a 2-stabbable

unit square intersection graph or 2-SUIG, if G has a 2-stabbed unit square

intersection representation. In this chapter, we shall prove the following

theorem.

Theorem 4.0.1. For a tree T , there is an O(|V (T )|) time algorithm to

decide if T is a 2-SUIG.

4.1 Chapter overview

In Section 4.2, we present some definitions that will be used through out

this chapter. In Section 4.3 we prove some properties of trees that are

2-SUIG. Finally in Section 4.4 we present our algorithm for recognising

trees that are 2-SUIG. Finally, we draw conclusions in Section 4.5.

4.2 Preliminaries

For an interval I = [a, b], let |I| = (b − a). A vertex of a tree T with

degree more than 2 is a branch vertex of T . A branch edge is an edge

incident to a branch vertex.

Let R be a 2-stabbed unit square intersection representation of a graph

G and y = a1, y = a2 be the stab lines with a1 < a2. The horizontal line

y = a2 is the top stab line ofR and the horizontal line y = a1 is the bottom

stab line of R. For a vertex u ∈ V (G), su shall denote the unit square

in R corresponding to u. The pair (xu, yu) shall denote the left bottom

corner of su. For two unit squares su and sv, we have su <x sv if xu < xv.

An edge uv is a bridge edge if su and sv intersect different stab lines. The

vertices corresponding to the unit squares intersecting the top stab line
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of R are called upper vertices and the vertices corresponding to the unit

squares intersecting the bottom stab line of R are called lower vertices.

For a connected subgraph H of G, let span(H) =
⋃

u∈V (H)

[xu, xu + 1].

4.3 Some properties of trees that are 2-SUIG

In this section, we prove some properties of trees that are 2-SUIG.

Observation 4.3.1. If T is a unit square intersection graph, then the

maximum degree of T is at most four.

A graph H is a subdivision of a graph G if H can be obtained by

replacing some edges of G with paths.

Lemma 4.3.1. Let T be a tree with at most one branch vertex. The tree

T is a 2-SUIG if and only if maximum degree of T is at most four.

Proof. If T is a 2-SUIG then by Observation 4.3.1, the maximum degree of

T is at most four. For the other direction, notice that if T has no branch

vertices, then T is a path and therefore a 2-SUIG. When T contains

exactly one branch vertex of degree at most four, then T must be a

subdivision of K1,3 or K1,4. In this case also T is a 2-SUIG.

An edge e of T is a red edge if each component of T − {e} contains a

K1,3 as a subtree. It is possible that a tree with more than one branch

vertex do not have a red edge. If T is a 2-SUIG, then the following lemma

follows from Observation 4.3.1.

Lemma 4.3.2. If T is a 2-SUIG and does not have any red edge, then

the number of branch vertices in T is at most 5.

Lemma 4.3.3. If T is a 2-SUIG, then either T has no red edge or the

set of red edges of T induce a connected path.
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Figure 4.3.1: Illustration of proof of Lemma 4.3.3

Proof. Let T has at least one red edge and T ′ be the graph induced by

all red edges. First we will show that T ′ is connected. Thus, assume that

T ′ has at least two components T1 and T2. Then there is a path P in T

connecting T1 and T2. Note that removing an edge e of P creates two

components of T each of which contains a K1,3 (a claw). Thus, e should

be a red edge. Therefore, T ′ is connected.

We will show that T ′ is a path. Assume that v is a vertex of T ′ with

degree at least 3. Also, let v1, v2 and v3 be three neighbours of v in T ′.

Let R be any 2-stabbed unit square intersection representation R of T .

Without loss of generality, we assume that sv1 intersects the upper-left

corner of sv, sv2 intersect the upper-right corner of sv, and sv3 intersects

the lower-right corner of sv. This implies that sv1 , sv2 intersect the top

stab line while sv3 intersects the bottom stab line (see Figure 4.3.1). As

each component of T−{vv1} has a claw, there must be a path of the form

v1v11v12...v1t in T such that sv1i <x sv1 for all i ∈ [t] and sv1t intersects the

bottom stab line. Similarly, as each component of T − {vv2} has a claw,

there must be a path of the form v2v21v22...v2t′ in T such that sv2 <x sv2i
for all i ∈ [t′] where sv2t′ intersects the bottom stab line. Moreover, as

each component of T − {vv3} has a claw, there must be a path of the

form v3v31v32...v3t′′ in T where sv3t′′ intersects the top stab line. But this

contradicts the fact thatR is a valid 2-stabbed unit square representation

of T . Thus, T ′ must be a path.
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For a tree T , we shall say that T has a red path if and only if the set

of red edges in T induce a path (which may be empty). A maximal red

path is a red path that is not properly contained in another red path. Let

P = v1v2 . . . vk be a maximal red path in T . The vertices v1 and vk are

endpoints of P . Lemma 4.3.3 leads us to two cases: when T has a red

path and when T does not have any red edge. To deal with both cases

in a uniform framework, we construct the extended red path of a tree T

as follows.

Let T be a tree such that the set of red edges is either empty or induce

a connected path. If the red edges of T induces a path P , then construct

the extended red path A = a1a2...ak by including the edge(s), that are

not red, incident to the endpoint(s) of P that have degree two in T .

In particular, if both the end points of P are branch vertices, then the

extended red path A is identical to P . On the other hand, if T has no red

edges, then distance between any two branch vertices is at most 2. Thus,

there exist a vertex v in T whose closed neighbourhood N [v] contains all

the branch vertices of T . Choose (if not found to be unique) one such

special vertex v. If v has degree two then consider the path uvw induced

by the closed neighbourhood of v and call it the extended red path of

T . If v does not have degree two, then the extended red path of T is

the singleton vertex v. In any case, rename the vertices of the extended

red path A = a1a2...ak so that we can speak about it in an uniform

framework along with the case T having red edges. The vertices of the

extended red path A are called the red vertices of T . See Figure 4.3.2(a)

for an example.

Lemma 4.3.4. Let T be a tree having an extended red path. A branch

vertex of T is either a red vertex or is adjacent to a red vertex.

Proof. If T has no red edge, then there exists a red vertex v in T such that

all the branch vertices are in the closed neighbourhood N [v] of v. Assume

for contadiction that a red vertex v and a non-red branch vertex u are
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a1

a8
a1

a8
aj

v1 P ′′P ′

(a) (b)

Figure 4.3.2: (a) The thick edges are the red edges and the path be-
tween a1 and a8 is the extended red path, (b) v1 is an agent of aj and
P ′, P ′′ are tails of v1.

connected by a path P containing at least one non-red vertex. Observe

that, for each edge e in P , both components in T − {e} contains a claw.

This is a contradiction.

The next lemma follows from Observation 4.3.1, Lemma 4.3.3 and 4.3.4.

Lemma 4.3.5. Let T be a tree with at least one branch vertex and an

extended red path A. If T is 2-SUIG then T − V (A) induces a set of

disjoint paths.

Lemma 4.3.6. Let T be a tree with an extended red path A = a1a2 . . . ak

and ai, ai+1 be two red vertices both having degree four in T . In any 2-

stabbed unit square intersection representation R of T , ai and ai+1 must

intersect different stab lines.

Proof. For contradiction assume that ai, ai+1 are lower vertices. Without

loss of generality assume sai <x sai+1
. Then sai+1

intersects either the

upper-right corner of sai or the lower-right corner of sai . If sai+1
intersects

the upper-right corner of sai , then for some neighbour z of ai, the squares

sai , sai+1
, sz will intersect each other in R. This is a contradiction. We

can argue similarly for the other cases as well.

Now we introduce some more definitions. Let T be a tree with an

extended red path A. The vertices adjacent to the red vertices of T that

are not red are called agents. Observe that, if v is an agent then it must
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be adjacent to exactly one red vertex, say, u. In this case, we shall say

that “v is an agent of u” (see Figure 4.3.2(b)).

If a tree T is a 2-SUIG, then due to Lemma 4.3.5, deleting all the

red vertices from T we will induce a set P of disjoint paths. Each path

P ∈ P contains exactly one vertex which is also an agent. Let v1 be

an agent of a red vertex aj and contained in a path P ∈ P . Also let

{P ′, P ′′} = P − {v1}. Then the path P ′ (and similarly P ′′) is called a

tail of the agent v1 (see Figure 4.3.2(b) for an example). Sometimes we

will also use the term “tail P ′ of the red vertex aj”. Note that an agent

has exactly two tails by allowing tails with zero vertices. Whenever an

extended red path P of the tree T under consideration is clear form the

context, the terms “red vertices”, “agents”, ”tail of an agent”, etc. are

considered to be defined with respect to this extended red path.

Let P = v1v2...vk be a path and R be a 2-stabbed unit square inter-

section representation of P . The path P is called a folded path if it has

a degree two vertex u such that either su <x sv for all v ∈ V (P ) \ {u} or

sv <x su for all v ∈ V (P ) \ {u}. Note that a folded path has at least one

bridge edge. The path P is a right monotone if sv1 <x sv2 <x ... <x svk
holds. Furthermore, a right monotone path P is upper right monotone

(resp. lower right monotone) if all vertices of P are upper (resp. lower)

vertices in R. Similarly, P is a left monotone if svk <x svk−1
<x ... <x sv1

holds. The terminologies upper left monotone paths and lower left mono-

tone paths are defined analogously. The path P is a monotone if P if

right or left monotone.

Let P = v1v2...vk be a path and R be a 2-stabbed unit square in-

tersection representation of P such that P is a monotone path in R.

Observe that α(P ) = dk
2
e < |span(P )| ≤ k. The representation R is a

stretched representation if |span(P )| = k and is a shrinked representation

if |span(P )| = α(P ) + ε where 0 < ε << 1.

Lemma 4.3.7. If a tree T is a 2-SUIG, then there exists a 2-stabbed unit

square intersection representation R of T where the extended red path of
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T is monotone and stretched.

Proof. Let R be a 2-stabbed unit square intersection representation of T

having an extended red path A = a1a2 . . . ak. If A is folded path inR then

there is a vertex u ∈ V (A) with sv <x su for all v ∈ V (A) \ {u}. Then

there will be two claws C1, C2 in two different components of T − {u}
with sv <x su for all v ∈ V (C1) ∪ V (C2). But this configuration is not

possible in any valid 2-stabbed unit square intersection representation of

T . Hence A cannot be a folded path in R.

Suppose A is not monotone in R. Then without loss of generality we

can assume that, there is a vertex ai ∈ V (A) such that sai intersects

the bottom stab line, sai+1
<x sai and sai+1

<x sai+2
in R. Then ai+1

and ai+2 must be on the top stab line. Let Ti+1 be the component of

T obtained by deleting the edge aiai+1 and contains ai+1. There is a

claw C3 in Ti+1 with sai+1
<x sw for all w ∈ V (C3). As R is a valid

representation of T , an agent z of ai with sai <x sz cannot be a branch

vertex. Hence the tail of z must be a lower right monotone path in R.

Therefore, we can translate the squares corresponding to the vertices of

Ti+1 to obtain a 2-stabbed unit square intersection representation of T

where sai <x sai+1
<x sai+2

. By performing the above operation for each

vertex in A we can get an alternative 2-stabbed unit square intersection

representation R′ of T where A is monotone.

If A is not stretched in R′ we apply the following procedure. Let

e = aiai+1 be an edge of the extended red path with sai <x sai+1
in R′.

Let Ti and Ti+1 be the components of T − {e} containing ai and ai+1,

respectively. Now translate the squares corresponding to the vertices of

Ti+1 to obtain a new 2-stabbed unit square intersection representation

R′′ of T where xai+1
= xai + 1. By performing this operation on every

edge of A we can get an alternative 2-stabbed unit square intersection

representation of T where A is monotone and stretched.

Lemma 4.3.8. If a tree T is a 2-SUIG, then there exists a 2-stabbed unit
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square intersection representation R of T where each tail is a shrinked

monotone path and all its vertices have a common stab.

Proof. Let P = v2v3...vl−1 be a tail of an agent v1. If all vertices of the

tail P have a common stab then P must be monotone. In this case, we

can obtain a new 2-stabbed unit square intersection representation of T

where P is shrinked, and we are done. Now assume P has at least one

bridge edge. Then any brige edge e of P divides the stab lines into two

parts, left and right. Assume, without loss of generality, that sv1 is in

the left part. As there are no branch vertices in the tail, we do not have

any vertex w ∈ V (T ) \ V (P ) with sw lying in the right part. Thus, we

can modify R by such that all the vertices of P have a common stab and

then obtain a new 2-stabbed unit square intersection representation of T

where P is shrinked.

Lemma 4.3.9. Let T be tree which is a 2-SUIG and A be its extended red

path. Then there exists a 2-stabbed unit square intersection representation

of T where endpoints of any bridge edge is a branch vertex of T .

Proof. By Lemma 4.3.7, there is a 2-stabbed unit square intersection

representation R of T where A is stretched and monotone. Let A =

a1a2 . . . ak and without loss of generality assume A to be a right monotone

path in R. Let i be the smallest integer such that A have a bridge edge

e = aiai+1 in R but there is a w ∈ {ai, ai+1} which is not a branch

vertex. We shall apply the following procedures to obtain an alternative

2-stabbed unit square intersection representation of T where ai and ai+1

have a common stab.

Consider the case when w = ai+1. Let S = {v ∈ V (T ) : sai <x sv}. Let

T ′ = T [S] and R′ = {su}u∈S be the 2-stabbed unit square intersection

representation of T ′ induced in R. Note that R′ contains sai+1
. Let R′′

be 2-stabbed unit square intersection representation of T ′ obtained by

reflectinq the unit squares in R′ with respect to the x-axis and having

the y = −z2 and y = −z1 as stab lines. Now translate the unit squares
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in R′′ upwards until all the upper vertices (with respect to R′′) of T ′

intersects y = z2 and all the lower vertices (with respect to R′′) intersect

y = z1. Note that ai can have at most one degree 2 agent in T ′ and thus,

that agent can have at most one tail. After what we did above, we can

adjust the y-coordinates of that agent and its tail, if needed, to obtain a

2-stabbed unit square intersection representation of T where ai and ai+1

have a common stab.

Consider the case when w = ai. Let S ′ = {v ∈ V (T ) : sv <x sai+1
}

and let T ′′ be the graph induced by S ′. Now we apply similar proce-

dure as above on T ′′. This will give a 2-stabbed unit square intersection

representation of T where ai and ai+1 have a common stab.

Now for each bridge edge of A that have a degree two vertex of T

incident on it, we shall apply the above procedure inductively to get a

2-stabbed unit square intersection representation of T that satisy the

statement of the lemma.

4.4 The algorithm

Now we shall describe our algorithm for deciding if a tree is a 2-SUIG.

First we need the following definitions. Given a tree T , for the remainder

of this section we shall assume that ε = 1
|V (T )| and extended red path of

T is A = a1a2 . . . ak. Also, whenever we refer to shrinked representation

of a path P , we shall refer to a shrinked representation of P such that

|span(P )| = |α(P )| + ε|V (T )|. For a vertex v ∈ V (T ), let d(v) denote the

degree of v in T .

For an agent v of T , lt(v) and st(v) are the two tails of v where the

number of vertices in st(v) is at most that of lt(v). In the remainder of

this section, |lt(v)| and |st(v)| shall denote the number of vertices of lt(v)

and st(v), respectively.

Let P = v1v2 . . . vt be a path having at least one vertex. The starting

point of a left monotone representation R of P is the point (xv1 + 1, yv1)
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v5 v4 v3 v2 v1

(a) starting point of a left monotone representation

v1 v2 v3 v4 v5

(b) starting point of a right monotone representation.

Figure 4.4.1: Definition of starting point of a monotone representation
of P = v1v2v3v4v5.

(Figure 4.4.1(a)). Notice that the starting point of R is the lower-right

corner of sv1 . Similarly, the starting point of a right monotone represen-

tation R′ of P is the point (xv1 , yv1) (Figure 4.4.1(b)).

Now we shall define a nice representation of a path P . Let R be a

shrinked monotone representation of P , v be a vertex of P and q, q′ be

point on the plane. ThenR is a nice−UL(q,q′) representation of P with re-

spect to v ifR is left (L) monotone, all vertices of P are upper (U) vertices

in R, (xv, yv) = q and yu = yq′ for all u ∈ V (P )\{v} where q′ = (xq′ , yq′).

Similarly, we define nice−LL(q,q′),nice−UR(q,q′) and nice−LR(q,q′) repre-

sentation of a path P with respect to a vertex v (Figure 4.4.2). When q

and q′ both equals to the starting point of R, notice that the left bottom

corner of all unit squares in R have the same y-coordinate as the starting

point. In this case, we define R to be simply an nice−UL representation

of P . In other words, R is an nice−UL representation of P if R is left

monotone, all vertices of P are upper vertices in R, and yu = y for all

u ∈ V (P ) where (x, y) is the starting point of R Similarly, we can define

nice−LL, nice−UR and nice−LR representation of P .

For a 2-stabbed unit sqaure intersection representa-

tion R of a graph G, let Φt(R) = max{xu + 1: u ∈
V (G), su intersects the top stab line of R}, and Φb(R) = max{xu +
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svq

yq′ yq′

Figure 4.4.2: A nice-UL(q,q′) representation of a path P with respect to
a vertex v ∈ V (P ). Here q′ = (xq′ , yq′).

1 : u ∈ V (G), su intersects the bottom stab line of R}.

Definition 4.4.1. For all 1 ≤ i < k, let Ti be the subtree of T induced

by the vertices in V (T ′)∪ {ai+1} where T ′ is the connected component in

T − aiai+1 that contains ai. Also define Tk = T .

Let R0 be a 2-stabbed unit square intersection representation of the

single vertex a1 where y = 0 and y = 1 are the stab lines and sa1 =

[1, 2]× [−ε, 1− ε].

Definition 4.4.2. For a fixed i ∈ {1, 2, . . . , k}, a 2-stabbed unit square

intersection representation R is an optimised representation of Ti if R
satisfies the following.

1. the path a1a2 . . . ai in Ti−1 is a stretched left monotone path in Ri−1,

2. when a vertex u of Ti−1 is a lower vertex we have yu < 0,

3. when a vertex u of Ti−1 is an upper vertex we have 0 < yu < 1,

4. for any 2-stabbed unit square intersection representation S ′′ =

{s′′u}u∈V (Ti−1)\{ai} of Ti−1 − {ai} which satisfies the following prop-

erties:

• the set of upper and lower vertices in S ′′ are same as that of

S ′ and

• s′′v = s′v for all v ∈ {a1, a2, . . . , ai−1}

we have that Φt(S ′)− Φt(S ′′) < ε and Φb(S ′)− Φb(S ′′) < ε.

Below we give a sketch for our O(|V (T )|)-time algorithm to check if T

has an optimised representation.
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4.4.1 Sketch of our algorithm

(a) Check if maximum degree of T is at most 4. If not, then report T

is not a 2-SUIG (by Observation 4.3.1).

(b) Check if there at most one branch vertex in T . If yes, then report

T is a 2-SUIG (by Lemma 4.3.1).

(c) Find out if T has an extended red path or not. If not, report that

T is not a 2-SUIG (by Lemma 4.3.5). Otherwise let A = a1a2 . . . ak

be the extended red path of T and T1, T2 . . . , Tk be subtrees of T

as defined in Definition 4.4.1.

(d) Let R0 be a 2-stabbed unit square intersection representation of

the single vertex a1 where y = 0 and y = 1 are the stab lines and

sa1 intersects the bottom stab line.

(e) For i = 1 to k find out the optimised representations Ri of Ti. If

we fail to find such a representation for some i ∈ {1, 2, ..., k}, then

report T is not a 2-SUIG. Otherwise return Rk.

In the next section, we show how to decide if there is an optimised

representation of T1 when k 6= 1.

4.4.2 Optimised representation of T1 when k 6= 1

Depending on the degree of a1, a2 in T and the lengths of the tails of their

agents, we shall describe a procedure to decide if there is an optimised

representation of T1. Depending on the degree of a1, the degree of a2

and the lengths of the tails of the agents of a1 we consider several cases.

Since the degrees of both a1, a2 are at most 4 and the each agent of a1 has

at most two tails, the total number of cases that need to be considered

are constant. Moreover, for each case to decide if there is an optimised

representation of T1 we need only constant amount of time. If the process

described below fails, we shall report that T is not a 2-SUIG. Otherwise

we shall construct an optimised representation R1 of T1.
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Case 1: d(a1) = 4, d(a2) = 4. In this case, we shall first take a unit square

sa2 such that xa2 = xa1 + 1 and ya2 = ya1 + 1. Notice that sa2 =

[2, 3] × [1 − ε, 2 − ε] and therefore sa2 intersects `1. Then we shall

find if there are three agents z1, z2, z3 of a1 such that there are unit

squares sz1 , sz2 and sz3 satisfying the following properties:

(a) sz1 = [xa1−1, xa1 ]×[ya1−ε, ya1+1−ε], sz2 = [xa1−1+ε, xa1+ε]×
[ya1+1, ya1+2] and sz3 = [xa1+ε, xa1+1+ε]×[ya1−ε, ya1+1−ε],

(b) if |lt(z1)| ≥ 1, then there is a nice-LL representation I11 of

lt(z1) whose starting point is (xz1 , yz1 − ε),
(c) if |st(z1)| ≥ 1, then there is a nice-UL representation I12 of

st(z1) whose starting point is (xz1 , yz1 + 1) (the top-left corner

of sz1),

(d) |st(z3)| = 0 and if |lt(z3) ≥ 1| then there is a nice-LR repre-

sentation I31 of lt(z3) whose starting point is (xz3 +1, yz3) (the

bottom-right corner of s(z3)),

(e) |st(z2)| ≤ 1 and moreover, if |st(z1)| ≥ 1 then |lt(z2)| ≤ 1 and

|st(z2)| = 0,

(f) |lt(z2)| ≥ 1, then there is a nice-UL representation I21 of lt(z2)

whose starting point q satisfies the following property

• if |st(z1)| ≥ 1 then q = (xz2 + 1 − ε2, yz2 + ε2) (Fig-

ure 4.4.3(a)), otherwise q = (xz2 , yz2) (Figure 4.4.3(b)).

(g) if |st(z2)| = 1, then there is a nice-UR representation I22 of

st(z2) whose starting point is (xz2 + ε2, yz2 + ε2).

Case 2: d(a1) = 4, d(a2) = 3. In this case, we shall first take a unit square

sa2 such that xa2 = xa1 + 1 and ya2 = ya1 − ε. Then we shall find if

there are three agents z1, z2, z3 of a1 such that there are unit squares

sz1 , sz2 and sz3 satisfying the following properties (See Figure 4.4.4):

144



sa1

sz1

sz2

sz3

I12

I11 I31

I21
sa2

(a)

sa1

sz1

sz2

sz3

I21 I22

I11 I31

sa2

(b)

Figure 4.4.3: Case 1 for representation of T1 when k 6= 1. (a) |st(z1)| ≥
1, (b) |st(z1)| = 0.

(a) sz1 = [xa1−1, xa1 ]×[ya1−ε, ya1+1−ε], sz2 = [xa1−1+ε, xa1+ε]×
[ya1+1, ya1+2] and sz3 = [xa1+2ε, xa1+1+2ε]×[ya1+1, ya1+2],

(b) the properties (b), (c), (e), (f) and (g) of Case 1,

(c) |lt(z3)| ≤ 1, and

(d) if |lt(z3)| = 1, then there is a there is a nice-UR representation

I31 of lt(z3) whose starting point is (xz3 − ε2, yz3 + ε2).

Case 3: d(a1) = 4, d(a2) = 2. In this case, we shall first take a unit square

sa2 such that xa2 = xa1 + 1 and ya2 = ya1 − ε. Then we shall find if

there are three agents z1, z2, z3 of a1 such that there are unit squares

sz1 , sz2 and sz3 satisfying the following properties (See Figure 4.4.5).

(a) sz1 = [xa1−1, xa1 ]×[ya1−ε, ya1+1−ε], sz2 = [xa1−1+ε, xa1+ε]×
[ya1+1, ya1+2] and sz3 = [xa1+2ε, xa1+1+2ε]×[ya1+1, ya1+2],
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Figure 4.4.4: Case 2 for representation of T1 when k 6= 1. (a) |st(z1)| ≥
1, (b) |st(z1)| = 0. In both figures, the dotted square represents a
neighbour of a2. Since, d(a2) = 3, such a vertex always exists.

(b) the properties (b), (c), (e), (f) and (g) of Case 1,

(c) |st(z3)| ≤ 1 and if |st(z3)| = 1 then there is a there is a nice-

UR representation I32 of st(z3) whose starting point is (xz3 −
ε2, yz3 + ε2) (See Figure 4.4.5(a)).

(d) if |lt(z3)| ≥ 1

• if |st(z3)| = 0 and |lt(z3)| = 1 then there is a nice-UR

representation I31 of lt(z3) whose starting point is (xz3 −
ε2, yz3 + ε2)

• if |st(z3)| = 0 and |lt(z3)| ≥ 2 then there is a nice−UR(q,q′)

representation I31 of lt(z3)∪{z3} with respect to z3 where

q = (xz3 , yz3) and q′ = (xz3 + ε2, yz3 + ε2) (See Fig-

ure 4.4.5(b)).

• if |st(z3)| = 1 then there is a nice-UR representation I31
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Figure 4.4.5: Case 3 for representation of T1 when k 6= 1. (a) |st(z1)| ≥
1, (b) |st(z1)| = 0.

of lt(z3) whose starting point is (xz3 + 1, yz3 + ε2)

Case 4: d(a1) = 3, d(a2) = 4. In this case, we shall first take a unit square

sa2 such that xa2 = xa1 + 1 and ya2 = ya1 + ε2. Then we shall find

if there are two agents z1, z2 of a1 such that there are unit squares

sz1 and sz2 satisfying the following properties (See Figure 4.4.6):

(a) sz1 = [xa1 − 1, xa1 ]× [ya1 − ε, ya1 + 1− ε] and sz2 = [xa1 − 1 +

ε, xa1 + ε]× [ya1 + 1, ya1 + 2],

(b) properties (b), (c), (e), (f) and (g) of case 1.

Case 5: d(a1) = 3, d(a2) = 3. In this case, we shall first take a unit square

sa2 such that xa2 = xa1 + 1 and ya2 = ya1 − ε. Then we shall find
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Figure 4.4.6: Case 4 for representation of T1 when k 6= 1. (a) |st(z1)| ≥
1, (b) |st(z1)| = 0. In both figures, the dotted square represents an
agent of a2. Since, d(a2) = 4, such an agent always exists.

if there are two agents z1, z2 of a1 such that there are unit squares

sz1 and sz2 satisfying the following properties:

(a) sz1 = [xa1 − 1, xa1 ]× [ya1 − ε, ya1 + 1− ε] and sz2 = [xa1 − 1 +

ε, xa1 + ε]× [ya1 + 1, ya1 + 2],

(b) properties (b) and (c) of case 1,

(c) if |st(z1)| ≥ 1 then |lt(z2)|+ |st(z2)| ≤ 3,

(d) if |st(z1)| = 0, then |st(z2)| ≤ 2,

(e) if |st(z2)| ≥ 1 then

• if |st(z1)| ≥ 1 then there is a nice-UL representation I22

of st(z2) whose starting point is (xz2 + 1− 2ε2, yz2 + ε2) (

see Figure 4.4.7(a)),

• otherwise, there is a nice−UR(q,q′) representation I22 of

st(z2) ∪ {z2} with respect to z2 where q = (xz2 , yz2) and
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q′ = (xz2 + ε2, yz2 + ε2) (see Figure 4.4.7(b)),

(f) if |lt(z2)| ≥ 1, then

• if |st(z1)| ≥ 1 then

– if |st(z2)| = 1 then there is a nice-UR representation

I21 of lt(z2) whose starting point is (xz2 + 1, yz2 + ε2)

( see Figure 4.4.7(a))

– if |st(z2)| = 0 and |lt(z2)| ≥ 2 then there is a

nice−UR(q,q′) representation I21 of lt(z2) ∪ {z2} with

respect to z2 where q = (xz2 , yz2) and q′ = (xz2 +

ε2, yz2 + ε2),

– if |st(z2)| = 0 and |lt(z2)| = 1 then there is a nice-

UL representation I21 of lt(z2) whose starting point is

q = (xz2 − ε2, yz2 + ε2)

• otherwise, there is a nice-UL representation I21 of lt(z2)

whose starting point is (xz2 , yz2) ( see Figure 4.4.7(b)),

Case 6: d(a1) = 3, d(a2) = 2. In this case, we shall first take a unit square

sa2 such that xa2 = xa1 + 1 and ya2 = ya1 − ε. Then we shall find

if there are two agents z1, z2 of a1 such that there are unit squares

sz1 and sz2 satisfying the following properties:

(a) properties (b), (c) of case 1.

(b) if |st(z1)| ≥ 1 then |st(z2)| ≤ 1,

(c) if |st(z2)| ≥ 1 then

• if |st(z1)| ≥ 1 then there is a nice-UL representation I22

of st(z2) whose starting point is (xz2 + 1 − ε2, yz2 + ε2) (

see Figure 4.4.8(a)),

• otherwise, there is a nice−UR(q,q′) representation I22 of

st(z2) ∪ {z2} with respect to z2 where q = (xz2 , yz2) and

q′ = (xz2 + ε2, yz2 + ε2) (see Figure 4.4.8(b)),
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Figure 4.4.7: Case 5 for representation of T1 when k 6= 1. (a) |st(z1)| ≥
1, (b) |st(z1)| = 0. In both figures, the dotted square represents a
neighbour of a2. Since, d(a2) = 3, such a vertex always exists.

(d) if |lt(z2)| ≥ 1, then

• if |st(z1)| ≥ 1 then

– if |st(z2)| = 1 then there is a nice-UR representation

I21 of lt(z2) whose starting point is (xz2 + 1, yz2 + ε2)

( see Figure 4.4.8(a))

– if |st(z2)| = 0 and |lt(z2)| ≥ 2 then there is a nice-

UR representation I21 of lt(z2) whose starting point is

q = (xz2 + ε2, yz2 + ε2)

– if |st(z2)| = 0 and |lt(z2)| = 1 then there is a nice-

UL representation I21 of lt(z2) whose starting point is

q = (xz2 − ε2, yz2 + ε2)

• otherwise, there is a nice-UL representation I21 of lt(z2)

whose starting point is (xz2 , yz2) ( see Figure 4.4.8(b)),
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Figure 4.4.8: Case 6 for representation of T1 when k 6= 1. (a) |st(z1)| ≥
1, (b) |st(z1)| = 0.

Let R1 = R0∪{sa2 , sz1 , sz2 , I11, I12, I21, I22, I31, I32}. It is not difficult

to verify that if T is a 2-SUIG then all the properties of exactly one of the

above case must be true and indeed R1 is a 2-stabbed unit square inter-

section representation of T1. Moreover, R1 can be obtained in O(|V (T1|)
time. Observe that R1 is an optimised representation of T1.

4.4.3 Optimised representation of Ti for 1 < i ≤ k

Using analogous case analysis as above, we can check whether there are

optimised representations of T2, T3, . . . , Tk. For each i, we shall take into

consideration the degree of ai, the degree of ai+1 and the lengths of all tails

of all agents ai. Recall that the degree of ai is at most 4 and each agent

of ai has at most two tails. Hence we need to consider only constant

number of cases for each 1 < i ≤ k to decide if there is an optimised

representation of Ti. For each 1 < i ≤ k, the total time taken by the
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algorithm is O(|V (Ti)|). Hence the total running time of the algorithm

is O(|V (T )|). This completes the proof of Theorem 4.0.1.

4.5 Conclusion and open problems

In this chapter, we gave a linear time algorithm to recognise trees that are

2-SUIG. However, the complexity of recognising trees that are unit square

intersection graphs is still unkown. A simpler algorithm to recognise trees

that are 2-SUIG would be interesting.
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In this chapter, we shall study the Minimum Dominating Set

(MDS) problem on rectangle overlap graphs and its subclasses. Recall

that, given a set of rectangles, C, the overlap graph G of C is the graph,

whose vertices correspond to the elements of C, and two vertices are joined

by an edge if and only if the boundaries of the corresponding rectangles

have a nonempty intersection. Here G is called a rectangle overlap graph

and C is a rectangle overlap representation of G. A dominating set of

an undirected graph G is a subset D of vertices such that each vertex in

V (G) \D is adjacent to some vertex in D. The Minimum Dominating

Set (MDS) problem is to find a minimum cardinality dominating set of

a graph G.

Linear programs are problems that can be expressed as

Minimize cTx

Subject to Ax ≤ b

and x ≥ 0

where x represents the vector of variables, c and b are vectors of

(known) coefficients, A is a (known) matrix of coefficients, and (·)T is

the matrix transpose. The expression to be maximized or minimized is

called the objective function.

If all of the variables are required to be integers, then the problem is

called an integer linear programming (ILP) problem. The relaxation of

an integer linear program is the linear program obtained by removing the

integrality constraint of each variable.

The integrality gap is the maximum ratio between the optimum solu-

tion of the integer program and of its relaxation. In an instance of a

minimization problem, if the real minimum (the minimum of the integer

problem) is Mint, and the relaxed minimum (the minimum of the linear

programming relaxation) is Mfrac, then the integrality gap of that in-

stance is Mint

Mfrac
. For an integer linear program Q, OPT (Q) denote the
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optimum cost of the objective funtion. For a linear program Ql, OPT (Ql)

is defined analogously.

5.1 Chapter overview

In Section 5.2, we show that, assuming the Unique Games Conjec-

ture [110] to be true, it is not possible to have a polynmial time (2− ε)-
approximation algorithm for the MDS problem on rectangle overlap

graphs, even if a rectangle overlap representation is given as input (The-

orem 5.2.1).

A set of rectangles is stabbed if all rectangles in the set intersects a

common straight line. A rectangle overlap representation R of a graph G

is a stabbed rectangle overlap representation if R is stabbed. A graph G

is a stabbed rectangle overlap graph if G has a stabbed rectangle overlap

representation. In Section 5.7, we give a 768-approximation algorithm

for the MDS problem on stabbed rectangle overlap graphs. To prove the

above result of this chapter, first we need to prove two lemmas. The first

lemma is about the stabbing segment with rays (SSR) problem and the

second lemma is about the stabbing rays with segment (SRS) problem.

In the SSR problem, the inputs are a set of disjoint leftward-directed

horizontal rays and a set of disjoint vertical segments. The objective is to

select a minimum number of leftward-directed horizontal rays that inter-

sect all vertical segments. Throughout this chapter, we let SSR(R, V ) de-

note an SSR instance where R is a given set of disjoint leftward-directed

horizontal rays and V is a given set of disjoint vertical segments. Using a

novel “token passing” based iterative rounding scheme [118], we observe

the following lemma in Section 5.3.

Lemma 5.1.1. Let R be a set of leftward-directed rays and V be a set of

disjoint vertical segments. Let C be an ILP formulation of an SSR(R, V )

instance. There is an O((n+m) log(n+m))-time algorithm to compute
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a set D ⊆ R which gives a feasible solution of C and |D| ≤ 2 · OPT (Cl)
where n = |R|,m = |V | and Cl is the relaxed LP formulation of C.

As a consequence of the above Lemma 5.1.1, we have a subquadratic

2-approximation algorithm for the SSR problem.

Theorem 5.1.1. There is an O((n+m) log(n+m))-time 2-approximation

algorithm for the SSR problem where n and m are the number of hori-

zontal rays and vertical segments, respectively.

In the SRS problem, the inputs are a set of disjoint leftward-directed

horizontal rays and a set of disjoint vertical segments. The objective is to

select a minimum number of segments that intersect all leftward-directed

horizontal rays. Throughout this chapter, we let SRS(R, V ) denote an

SRS instance where R is a given set of disjoint leftward-directed hori-

zontal rays and V is a given set of disjoint vertical segments. We observe

the following lemma in Section 5.4.

Lemma 5.1.2. Let C be an ILP formulation of an SRS(R, V ) instance.

There is an O(n log n) time algorithm to compute a set D ⊆ V which

gives a feasible solution of C and |D| ≤ 2 · OPT (Cl) where n = |V | and

Cl is the relaxed LP formulation of C.

Before we can prove our main result, we use Lemma 5.1.1 and 5.1.2 to

prove upper bounds on the integrality gap of the following optimisation

problems.

1. The local vertical segment covering (LVSC) problem: In

this problem, the inputs are a set H of disjoint horizontal segments

intersecting a common straight line and a set V of disjoint vertical

segments. The objective is to select a minimum number of horizon-

tal segments that intersect all vertical segments. Throughout this

article, we let LVSC(V,H) denote an LVSC instance.
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2. The local horizontal segment covering (LHSC) problem:

In this problem, the inputs are a set H of disjoint horizontal seg-

ments all intersecting a common straight line and a set V of disjoint

vertical segments. The objective is to select a minimum number of

vertical segments that intersect all horizontal segments. Through-

out this article, we let LHSC(V,H) denote an LHSC instance.

We note that Bandyapadhyay and Mehrabi [14] considered restricted

cases of the LVSC and the LHSC problem. They proved that LVSC

problem remains NP-hard even if all horizontal segments in the input

instance intersect a common vertical line. We also note that PTAS are

known for both the LVSC and the LHSC problems [15].

In Section 5.5 and 5.6, we prove Lemma 5.1.3 and 5.1.4, respectively.

Lemma 5.1.3. Let C be an ILP formulation of an LVSC(V,H) instance.

There is an O(n5) time algorithm to compute a set D ⊆ H which gives a

feasible solution of C and |D| ≤ 8 ·OPT (Cl) where n = |V ∪H| and Cl is

the relaxed LP formulation of C.

Lemma 5.1.4. Let C be an ILP formulation of an LHSC(V,H) instance.

There is an O(n5) time algorithm to compute a set D ⊆ V which gives a

feasible solution of C and |D| ≤ 8 ·OPT (Cl) where n = |V ∪H| and Cl is

the relaxed LP formulation of C.

Finally, we draw conclusions in Section 5.8.

5.2 Hardness result

In this section, we prove the following theorem.

Theorem 5.2.1. Assuming the Unique Games Conjecture, for any ε > 0,

it is not possible to have a polynomial time (2 − ε)-approximation algo-

rithm for the MDS problem on rectangle overlap graphs, even if a rect-

angle overlap representation is given as input.
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Figure 5.2.1: Reduction procedure for Theorem 5.2.1. (a) Input graph
G, (b) The graph G′ and (c) rectangle overlap representation of G′.

A vertex cover of a graph G is a subset C of V (G) such that each

edge in E(G) has an endvertex which lies in C. The Minimum Vertex

Cover problem is to find a minimum cardinality vertex cover of a graph.

Assuming Unique Games Conjecture to be true, the Minimum Vertex

Cover has no polynomial-time (2− ε)-approximation algorithm for any

ε > 0 [109]. We shall reduce the Minimum Vertex Cover problem to

the MDS problem on rectangle overlap graphs.

Given a graph G, construct another graph G′ as follows. Define

V (G′) = V (G) ∪ E(G). Define E(G′) = {uv : u, v ∈ V (G)} ∪ {ue : u ∈
V (G), e ∈ E(G) and u is an endvertex of e in G}. We have the following

observation

Observation 5.2.1. The graph G has a vertex cover of size k if and only

if G′ has a dominating set of size k.

Proof. Let C be a vertex cover of G. Then at least one endpoint of every

edge of G belongs to C. From construction of G′, it follows that C is

a dominating set of G′. Now let D be a dominating set of G′. Since

E induces an independent set in G′, we can assume that D ⊆ V (G).

Therefore, D is a vertex cover of G.

Therefore, we will be done by showing that G′ is a rectangle overlap

graph. Let V (G) = {v1, v2, . . . , vn} and for each vi ∈ V (G) define Rvi =

[i, n+ 1]× [−i, 0] (See Figure 5.2.1(c) for illustration).
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Notice that, each vertex u ∈ V (G′) \ V (G), has degree two and is

adjacent to exactly two vertices of V (G). For each vertex u ∈ V (G′) \
V (G), introduce a rectangle Ru which overlaps only with Rvi and Rvj

where {vi, vj} is the set of vertices adjacent to u with i < j. This is

possible as Ru can be kept around the unique intersection point of the

bottom boundary of Rvi and the left boundary of Rvj (see Figure 5.2.1(c)

for illustration). Formally, for each u ∈ V (G′) \ V (G), define Ru =

[p−ε, p+ε]×[q−ε, q+ε] where ε = 1
|V (G)| and (p, q) is the intersection point

of the bottom boundary of Rvi and the left boundary of Rvj . Observe that

the set of rectangles R′ = {Rvi : vi ∈ V (G)} ∪ {Ru : u ∈ V (G′) \ V (G)}
is a rectangle overlap representation of G′. This completes the proof of

Theorem 5.2.1.

5.3 Integrality gap of the SSR problem

In this section, we shall prove Lemma 5.1.1 and Theorem 5.1.1 by showing

that the integrality gap of the stabbing segments with segments (SSR)

problem is at most two. Recall in the SSR problem, the inputs are a set

of disjoint leftward-directed horizontal rays and a set of disjoint vertical

segments. The objective is to select a minimum number of leftward-

directed horizontal rays that intersect all vertical segments.

In this section, we represent a leftward-directed horizontal ray by simply

a ray and a vertical segment by a segment in short. Let R be a set of

disjoint rays and V be a set of disjoint vertical segments. We assume

each segment intersects at least one ray in R and no two segments in V

have the same x-coordinate.

To prove Lemma 5.1.1, first we present an iterative algorithm consisting

of three main steps. The first step is to include all rays r ∈ R in solution

S whenever some segments in V intersect precisely a single ray r in that

iterative step. In the next step, delete all segments intersecting any ray

in S from V . In the final step, find a ray in R \ S whose x-coordinate of
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Algorithm 1 SSR-Algorithm

Input: A set R of leftward-directed rays and a set V of vertical
segments.

Output: A subset of R that intersects all segments in V .

1: Tr = {r} for each r ∈ R and i← 1, V0 ← V,R0 ← R, S ← ∅, S0 ← ∅
. Initialisation.

2: while Vi−1 6= ∅ do
3: S ← S ∪ {r : r ∈ Ri−1, r is critical after (i − 1)th iteration} and
Si ← S.

. Critical ray collection.
4: Vi ← the set obtained by deleting all segments from Vi−1 that

intersect a ray in Si.
5: Find a r ∈ Ri−1 \ Si whose x-coordinate of the right endpoint is

the smallest.
6: r discharges the token to its neighbours.
7: Ri ← The set obtained by deleting {r} ∪ Si from Ri−1.

. Discharging token step.
8: i← i+ 1;
9: end while

10: return S

the right endpoint is the smallest among all rays in R \ S and delete it

from R (when there are multiple such rays, choose one arbitrarily). We

repeat the above three steps until V is empty. The above algorithm takes

O((|R|+ |V |) log(|R|+ |V |)) time (using segment trees [18]) and outputs

a set S of rays such that all segments in V intersect at least one ray in

S.

We describe the above algorithm formally in Algorithm 1. Below we

introduce some notations used to describe the algorithm. We assign token

Tr = {r} for each r ∈ R initially. For i ≥ 1, let Ri, Vi, Si be the set of

rays, the set of segments and the solution constructed by this Algorithm 1,

respectively at the end of ith iteration. A ray r ∈ Ri is critical if there is

a segment v ∈ Vi such that r is the only ray in Ri that intersects v. We

describe a discharging technique below.
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Figure 5.3.1: (a) An input SSR instance, (b) 1st iteration, (c) 2nd it-
eration and (d) 3rd iteration of the MOD-SSR-Algorithm with (a) as
input. A dotted ray (or segment) indicates that it is deleted.

Let D be a subset of R. A ray r ∈ D lies between two rays r′, r′′ ∈ D
if the y-coordinate of r lies between those of r′, r′′. A ray r ∈ D lies just

above (resp. just below) a ray r′ ∈ D if y-coordinate of r is greater (resp.

smaller) than that of r′ and no other ray lies between r, r′ in D. Two

rays r, r′ ∈ D are neighbours of each other if r lies just above or below r′.

Discharging Method: Let r ∈ Ri−1 \Si be a ray whose x-coordinate

of the right endpoint is the smallest. The phrase “r discharges the token

to its neighbours” in the ith iteration means the following operations in

the given order.

(i) Let r′ lie just above r and r′′ lie just below r in Ri−1 \ Si. For all

x ∈ Tr (x and r not necessarily distinct) do the following. If there is

a segment in Vi that intersects x, r′ and r then assign Tr′ = Tr′∪{x}
and if there is a segment in Vi that intersects x, r′′ and r then

Tr′′ = Tr′′ ∪ {x}.

(ii) Make Tr = ∅ after performing the above step.

For an illustration, consider the input instance shown in Fig-

ure 5.3.1(a). At the first iteration of Algorithm 1, r3 passes the token

to its neighbours (r2, r4) and gets deleted. After the 1st iteration, notice

that r2 has become critical. So, at the begining of the 2nd iteration Algo-

rithm 1 put r2 in the solution. Then all segment intersecting r2 is deleted
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and r2 itself is also deleted. Also in the second iteration r1 passes the

token to its neighbour (r4) and gets deleted. Finally in the third iteration

r4 is put in the solution. We have the following observation.

Observation 5.3.1. For some v ∈ Vk, k ≥ 1, if some ray r ∈ R0

intersects v, then either r ∈ Rk or there exists some ray r′ ∈ Rk such

that r ∈ Tr′.

Proof. Assume r /∈ Rk. Let < r1, r2, . . . , rk > be a sorted order of the rays

such that for i < j, ri discharged the token to the neighbours before rj.

Due to step 5 of SSR-algorithm, X =< r1, r2, . . . , rk > is an increasing

sequence based on the x-coordinate of their right endpoint. Observe

that, whenever a ray ri ∈ X discharged its token to its neighbours in

the ith iteration, all the vertical segments in Vi intersected by ri also

intersects one of the immediate neighbours of ri. Again as v ∈ Vk, v

is not intersected by critical ray within k iteration. Hence the result

follows.

Lemma 5.3.1. For a ray r, there are at most two tokens containing r.

Proof. If r never discharged its token to its neighbours, then the state-

ment is true. Let r discharged the token to its neighbours at iteration i.

Note that, r discharged tokens to at most two of its neighbours. Since

r gets deleted after the discharging step, the rays whose token contain r

become neighbours of each other.

Let j be the minimum integer with i < j such that at the end of (j−1)th

iteration, there is a ray p ∈ Rj−1 which is critical and r ∈ Tp. Note that

iteration of SSR-Algorithm may stop before encountering such events.

However, within iteration i to j − 1, there may exist some rays which

discharged their tokens containing r due to step 5 of SSR-Algorithm.

To prove the lemma, we use induction to show that there are at most

two tokens containing r in any iteration from i upto j−1. Consider some

k, i < k < j, such that x1, x2 ∈ Rk−1 be only two rays where r ∈ Tx1
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and r ∈ Tx2 . Notice that, x1 and x2 are neighbours of each other and

without loss of generality assume x1 lies just above x2 in Vk−1. Assume

x1 discharged its token at kth iteration. If there exists a neighbour of x1

(say x3) which is different from x2, then due to the discharging step of

kth iteration, x1 passes the token to its neighbours (i.e x2 and x3) and

gets deleted from Rk−1 to create Rk. If x3 does not exist, then x1 shall

pass the token only to x2. Therefore x2 becomes the top-most ray among

those rays in Rk which intersect some segment intersecting r.

Moreover, if x was the only ray in Rk−1 such that r ∈ Tx, then x was the

top-most (or bottom-most) ray among those rays in Rk−1 which intersect

some segment intersecting r. Therefore, at the end of kth iteration there

is exactly one ray x′ ∈ Rk such that r ∈ Tx′ and x′ must be the top-most

(resp. bottom-most) ray among those rays in Rk which intersect some

segment intersecting r.

Hence we conclude that for each k with i ≤ k < j, there is at most

two rays r′, r′′ ∈ Rk such that r ∈ Tr′ ∩ Tr′′ and they are neighbours.

If there is exactly one ray r′′′ ∈ Rk such that r ∈ Tr′′′ then r′′′ must be

the top-most or bottom-most ray among those rays in Rk which intersect

some segment intersecting r.

In iteration j, ray p is critical and r ∈ Tp and p is put in the solution.

If p is the only ray whose token contained r, only Tp will contain r after

the termination of Algorithm 1. Let r′, p ∈ Rj−1 be the rays whose

token contained r. They must be neighbours. Without loss of generality

assume that p lies just above r′. If both r′, p are selected in Sj, then

there is nothing to prove. Now consider the set A of segments in Vj that

intersects r but not p. Note that, no ray above p intersects any segment

in A. Hence r′ becomes the only ray in next iterative step whose token

contains r and r′ turns to be bottom most ray among those rays in Rj−1

which intersect some segment intersecting r. Now consider any iteration

k > j. By similar arguments as above, there would be at most one ray

in Rk that contains the token r. Hence the lemma follows.
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For a segment v ∈ V , let N(v) ⊆ R be the set of rays that intersect v.

Let r ∈ S be a ray, i be the minimum integer such that r ∈ Si. There

must exist a segment νr ∈ Vi−1 such that r is the only ray in Ri−1 that

intersects νr and all rays in N(νr)\{r} must have passed the token to its

neighbours. So, for each ray r ∈ S, there exists a segment νr such that

for all x ∈ N(νr) \ {r} we have Tx = ∅. We call νr a critical segment with

respect to r.

Observation 5.3.2. For a ray r ∈ S let νr be a critical segment with

respect to r. Then N(νr) ⊆ Tr.

Proof. Consider any arbitrary but fixed deleted ray y ∈ N(νr)\{r} which

was deleted at some jth iteration. By Observation 5.3.1, there exists a

ray y′ ∈ Rj such that y′ intersects v and y ∈ Ty′ . Applying the above

argument for all rays in N(νr) \ {r}, we have the proof.

Lemma 5.3.2. If S is the set returned by the SSR-algorithm with rays R

and segments V , then |S| ≤ 2|OPT |, where OPT is an optimum solution

of SSR(R, V ).

Proof. Let R be the set of rays and V be the set of segments with |R| =
n, |V | = m. Consider the ILP formulation Q of SSR(R, V ). For each ray

r ∈ R, let xr ∈ {0, 1} denote the variable corresponding to r. Objective

is to minimize
∑
r∈R

xr with constraints
∑

r∈N(v)

xr ≥ 1 for all v ∈ V . Let the

corresponding relaxed LP formulation be Ql.

Let Ql = {xr}r∈R be an optimal solution of Ql. Consider SSR-

algorithm. Here, define yr = 1 if r ∈ S, yr = 0 if r /∈ S and Q′ = {yr}r∈R,

obtained by the algorithm. This is a feasible solution of Q as SSR-

algorithm terminates only when no segments are left in Vi. Now we fix

any arbitrary r ∈ S and νr be a critical segment with respect to r. Then

due to Observation 5.3.2, we know that for all z ∈ N(νr) \ {r} we have

Tz = ∅ and N(νr) ⊆ Tr. Since N(νr) ⊆ Tr by Observation 5.3.2, we have
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for the constraint corresponding to νr in Ql,∑
z∈N(νr)

yz = 1 ≤
∑

z∈N(νr)

xz ≤
∑
z∈Tr

xz

Therefore, from above argument and from Lemma 5.3.1 we conclude

that

|S| =
∑
r∈S

yr =
∑
r∈S

∑
z∈N(νr)

yz ≤
∑
r∈S

∑
z∈Tr

xz ≤ 2
∑
z∈R

xz ≤ 2|OPT |.

Hence we have the proof.

The proofs of Lemma 5.1.1 and Theorem 5.1.1 follows directly from

the proof of Lemma 5.3.2.

5.4 Integrality gap of the SRS problem

In this section we shall prove Lemma 5.1.2 by showing that the upper

bound of the integrality gap of the stabbing rays with segments (SRS)

problem is at most two. Recall in the SRS problem, the inputs are a

set of disjoint leftward-directed horizontal rays and a set of disjoint ver-

tical segments. The objective is to select a minimum number of vertical

segments that intersect all leftward-directed horizontal rays.

2-approximation algorithm for the SRS problem: With each

segment v ∈ V , we associate a token Tv which is a subset of V . Initialise

Tv = ∅ for each v ∈ V . Let ri be the ray whose right-endpoint, (xi, yi), has

the smallest x-coordinate. We assume without loss of generality that x-

and y-coordinates of the endpoints of the rays are all distinct. Assuming

that there is a feasible solution to the SRS instance, there must exist a

segment of V that intersects ri. Let N(ri) ⊆ V be the set of segments

that intersect ri. Let vtop (resp. vbot) be a segment in N(ri) whose top
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endpoint is top-most (resp., bottom endpoint is bottom-most); it may be

that vtop = vbot. We add both vtop and vbot to our heuristic solution set

S. Also we set Tvtop = Tvbot = N(ri). We remove from R all of the rays

that intersect vtop or vbot, delete all segments in N(ri) and then repeat the

above steps untill R = ∅. Observe that for each ray r, there is a segment

v ∈ S that intersects r. Also observe that for each segment v ∈ V , there

are at most two tokens such that both of them contains v. Observe that,

the running time of the above algorithm is O(n log n) where n = |V |.

Lemma 5.4.1. Let Q be the ILP of an SRS instance with a set of rays R

and set of segments V as input and Ql be the corresponding relaxed LP.

Then OPT (Q) ≤ 2 ·OPT (Ql).

Proof. Let X = {xv}v∈V be an optimal solution of Ql where xv denotes

the value of the variable in Ql corresponding to v ∈ V . Let S be the

solution returned by the above algorithm with R, V as input. Now define

for each v ∈ V , yv = 1 if v ∈ S, yv = 0 if v /∈ S and let Y = {yv}v∈V .

Observe that Y is a feasible solution of Q. For each z ∈ S, there is a ray

ri such that Tz = N(ri). Therefore, yz = 1 ≤
∑

v∈N(ri)

xv =
∑
v∈Tz

xv

As a segment v is contained in at most two tokens, using the above

inequality we have

|S| =
∑
v∈S

yv ≤
∑
v∈S

∑
v′∈Tv

xv′ ≤ 2
∑
v′∈V

xv′ = 2 ·OPT (Ql)

Hence the result follows.

To complete the proof of Lemma 5.1.2 observe that the approximation

algorithm stated above returns a feasible solution D for the ILP formula-

tion C of an SRS instance in O(n log n) time such that |D| ≤ 2 ·OPT (Cl).
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5.5 Integrality gap of the LVSC problem

In this section, we shall prove Lemma 5.1.3 by showing that the upper

bound of the integrality gap of the LVSC problem is at most 8.

Let l be the straight line that intersects all horizontal segment in H.

Notice that if l is a horizontal line then any vertical line segment intersects

at most one horizontal line segment in H. This is because horizontal lines

in H are disjoint. But, in this case, there is nothing to prove.

Therefore, without loss of generality, we assume that l passes through

the origin. at an angle in [π
2
, π). For a vertical segment v ∈ V , let N(v)

denote the set of horizontal segments intersecting v, A(v) be the set of

horizontal segments that intersect v above l and B(v) = N(v) \ A(v).

Observe that for a vertical segment v and a horizontal segment h ∈ B(v),

h intersects v on or below l.

Based on these consider the following ILP formulation, Q, of the

LVSC(V,H) instance. For each horizontal segment h ∈ H let xh ∈ {0, 1}
denote the variable corresponding to h. Objective is to minimize

∑
h∈H

xh

with constraints ∑
h∈A(v)

xh +
∑
h∈B(v)

xh ≥ 1, ∀v ∈ V

Let Ql be the relaxed LP formulation of Q and Ql = {xh : h ∈ H} be

an optimal solution of Ql. Since Ql consists of n variables where n = |H|,
solving Ql takes O(n5) time [147]. Now we define the following sets.

V1 =

v ∈ V :
∑
h∈A(v)

xh ≥
1

2

 , V2 =

v ∈ V :
∑
h∈B(v)

xh ≥
1

2


H1 =

⋃
v∈V1

A(v), H2 =
⋃
v∈V2

B(v)

Based on these, we consider two integer programs Q′ and Q′′.
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minimize
∑
h∈H1

x′h

subject to
∑
h∈A(v)

x′h ≥ 1,∀v ∈ V1

x′h ∈ {0, 1}, h ∈ H1

minimize
∑
h∈H2

x′′h

subject to
∑
h∈B(v)

x′′h ≥ 1,∀v ∈ V2

x′′h ∈ {0, 1}, h ∈ H2

Q′ Q′′

Let Q′l and Q′′l be the relaxed LP formulation of Q′ and Q′′ respec-

tively. Clearly, the solutions of Q′ and Q′′ gives a feasible solution for Q.

Hence OPT (Q) ≤ OPT (Q′) + OPT (Q′′). For each xh ∈ Ql, define yh =

min{1, 2xh} and define Yl = {yh}xh∈Ql
. Notice that Yl gives a feasible

solution to Q′l and Q′′l . Therefore, OPT (Q′l) +OPT (Q′′l ) ≤ 2 ·OPT (Ql).

We have the following claim.

Claim. OPT (Q′) ≤ 2 ·OPT (Q′l) and OPT (Q′′) ≤ 2 ·OPT (Q′′l ).

To prove the first part, note that for each segment v ∈ V1, A(v) is non-

empty and for each h ∈ A(v), h intersects v above the line l (the straight

line which intersects all segments in H). Since all segments in H1 inter-

sect the straight line l we can consider the horizontal segments in H1 as

leftward-directed rays and all vertical segments in V1 lie above l. Hence,

solving Q′ is equivalent to solving an ILP formulation, say E , of the prob-

lem of finding a minimum cardinality subset of leftward-directed rays in

H1 that intersects all vertical segments in the set V1. Hence solving E
is equivalent to solving an SSR instance with H1 and V1 as input. By

Lemma 5.1.1, we have that

OPT (Q′) = OPT (E) ≤ 2 ·OPT (El) ≤ 2 ·OPT (Q′l)

where El is the relaxed LP formulation of E . Hence we have proof of

the first part. For the second part, using similar arguments as above, we

can show that solving Q′′ is equivalent to solving an SSR instance and

therefore by Lemma 5.1.1, we have that OPT (Q′′) ≤ 2 ·OPT (Q′′l ). Hence

the proof of the claim follows.
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By Lemma 5.1.1, we can solve both Q′ and Q′′ in polynomial time. Let

D′ and D′′ be solutions of Q′ and Q′′, respectively. Clearly, D′ ∪D′′ is a

feasible solution to the LVSC(V,H) instance. Hence,

|D′ ∪D′′| ≤ 4(OPT (Q′l) +OPT (Q′′l ) ≤ 8 ·OPT (Ql)

This completes the proof.

5.6 Integrality gap of the LHSC problem

In this section, we shall prove Lemma 5.1.4 by showing that the upper

bound of the integrality gap of the LHSC problem is at most 8. The

proof is similar to that of Lemma 5.1.3. For sake of completeness, we

present the detailed proof below.

Let l be the straight line that intersects all horizontal segment in H.

Without loss of generality, we assume that l passes through the origin

at an angle in [π
2
, π). For a horizontal segment h ∈ H, let N(h) denote

the set of vertical segments intersecting h, A(h) be the set of vertical

segments that intersect h above l and B(h) = N(h) \A(h). Observe that

for a horizontal segment h and a vertical segment v ∈ B(h), v intersects

h on or below l.

Based on these we have the following ILP formulation of the

LHSC(V,H) instance.

minimize
∑
v∈V

xv

subject to
∑
v∈A(h)

xv +
∑
v∈B(h)

xv ≥ 1, ∀h ∈ H

xv ∈ {0, 1}, ∀v ∈ V
Q

Let Ql be the the relaxed LP formulation of Q and Ql = {xv : v ∈ V }
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be an optimal solution of Ql. Now we define the following sets.

H1 =

h ∈ H :
∑
v∈A(h)

xv ≥
1

2

 , H2 =

h ∈ H :
∑
v∈B(h)

xv ≥
1

2


V1 =

⋃
h∈H1

A(h), V2 =
⋃
h∈H2

B(h)

Based on these, we consider the following two integer programs Q′ and

Q′′.

minimize
∑
v∈V1

x′v

subject to
∑
v∈A(h)

x′v ≥ 1,∀h ∈ H1

x′v ∈ {0, 1}, v ∈ V1

minimize
∑
v∈V2

x′′v

subject to
∑
v∈B(h)

x′′v ≥ 1,∀h ∈ H2

x′′v ∈ {0, 1}, v ∈ V2

Q′ Q′′

Let Q′l and Q′′l be the relaxed LP formulation of Q′ and Q′′ respec-

tively. Clearly, the solutions of Q′ and Q′′ gives a feasible solution for Q.

Hence OPT (Q) ≤ OPT (Q′) + OPT (Q′′). For each xv ∈ Ql, define yv =

min{1, 2xv} and define Yl = {yv}xv∈Ql
. Notice that Yl gives a feasible

solution to Q′l and Q′′l . Therefore, OPT (Q′l) +OPT (Q′′l ) ≤ 4 ·OPT (Ql).

We have the following claim.

Claim. OPT (Q′) ≤ 2 ·OPT (Q′l) and OPT (Q′′) ≤ 2 ·OPT (Q′′l ).

To prove the first part, note that for each vertex h ∈ H1, A(h) is non-

empty and for each v ∈ A(h), v intersects h above the line l (the straight

line which intersects all segments in H). Since all segments in H1 inter-

sect the straight line l we can consider the horizontal segments in H1 as

leftward-directed rays and all vertical segments in V1 lie above l. Hence,

solving Q′ is equivalent to solving an ILP formulation, say E , of the prob-

lem of finding a minimum cardinality subset of vertical segments in V1

that intersects all leftward-directed rays in the set H1. Hence solving E
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is equivalent to solving an SRS instance with V1 and H1 as input. By

Lemma 5.1.2, we have that

OPT (Q′) = OPT (E) ≤ 2 ·OPT (El) ≤ 2 ·OPT (Q′l)

where El is the relaxed LP formulation of E . Hence we have proof of

the first part. For the second part, using similar arguments as above, we

can show that solving Q′′ is equivalent to solving an SRS instance and

therefore by Lemma 5.1.2, we have that OPT (Q′′) ≤ 2 ·OPT (Q′′l ). Hence

the proof of the claim follows.

By Lemma 5.1.2, we can solve both Q′ and Q′′ in polynomial time. Let

D′ and D′′ be solutions of Q′ and Q′′, respectively. Clearly, D′ ∪D′′ is a

feasible solution to the LHSC(V,H) instance. Hence,

|D′ ∪D′′| ≤ 2(OPT (Q′l) +OPT (Q′′l ) ≤ 8 ·OPT (Ql)

Hence we have the proof of Lemma 5.1.4.

5.7 Algorithm for stabbed rectangle overlap

graphs

Given a stabbed rectangle overlap representation of a graph G with n ver-

tices we shall give a 768-approximation algorithm for the MDS problem

on G. Specifically, we shall prove the following theorem.

Theorem 5.7.1. Given a stabbed rectangle overlap representation of a

graph G with n vertices, there is an O(n5)-time 768-approximation algo-

rithm for the MDS problem on G.

We shall use Lemma 5.1.3 and Lemma 5.1.4 to prove the above theo-

rem.
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Ru

Rv2
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segment-1

segment-2

segment-3

(a) (b)

Figure 5.7.1: (a) In this example Rv1 ∈ N ′(u) and Rv2 ∈ N ′′(u). (b)
Nomenclature for the four boundadry segments of a rectangle.

Let R be a stabbed rectangle overlap representation of a graph G and

l be the line that intersects all rectangles in R. We shall also refer to l

as the cutting line.

For a vertex u ∈ V (G), let Ru denote the rectangle corresponding to u

in R. Without loss of generality, we assume that the coordinates of all

corner points of all the rectangles in R are distinct and that the cutting

line passes through the origin at an angle in [π
2
, π) with the positive x-axis.

Each rectangle Ru consists of four boundary segments i.e. left segment,

top segment, right segment and bottom segment. Without loss of gen-

erality, we assume that the cutting line intersects eactly two boundary

segments of each rectangle in R. For a vertex u ∈ V , let N(u) denote the

set of rectangles that overlaps with Ru in R. Let N ′(u) be the set of rect-

angles having a boundary segment that intersects both the cutting line

and some boundary segment of Ru that does not intersect the cutting line.

See Figure 5.7.1(a) for an example. Now define N ′′(u) = N(u) \ N ′(u).

We have the following observation.

Observation 5.7.1. For a rectangle Ru ∈ R and a rectangle X ∈ N ′′(u),

there is a boundary segment of Ru that intersects the cutting line and some

boundary segment of X.

Proof. Suppose X has a boundary segment that intersects the cutting line

and some boundary segment s of Ru. In this case, s must also intersect
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the cutting line and we are done. Otherwise, observe that X contains

two boundary segments, say s1 and s2, such that none of s1, s2 intersects

the cutting line and Ru intersects both s1 and s2. If s1 and s2 belong

to opposite sides of the cutting line, then both s1 and s2 are horizontal

or both of them are vertical. In either case, Ru must have a boundary

segment t that intersect both s1, s2 and the cutting line. Consider the

case when both s1 and s2 lie below the cutting line. Then there exists

w ∈ {s1, s2} which is a vertical segment and z ∈ {s1, s2} \ {w} which is a

horizontal segment. Hence, Ru must have a horizontal boundary segment

w′ that intersects w and a vertical boundary segment z′ that intersects z.

If neither w′ nor z′ intersects the cutting line, then observe that the top-

right corner of Ru must lie below the cutting line, implying that Ru does

not intersect the cutting line. This is a contradiction. Similarly, the case

when both s1, s2 lie above the cutting line also leads to a contradiction.

We shall denote the left segment of a rectangle Ru ∈ R also as the

segment-0 of Ru. Similarly segment-1, segment-2 and segment-3 of Ru

shall refer to the top segment, the right segment and the bottom seg-

ment of Ru, respectively. See Figure 5.7.1(b) for an illustration. Let

S = {(0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3), (3, 0), (3, 2)}. Since no two

horizontal segments or two vertical segments intersect, we have the fol-

lowing observation.

Observation 5.7.2. If two rectangles Ru, Rv ∈ R overlap there must be

a pair (i, j) ∈ S such that segment-i of Ru intersects segment-j of Rv.

Based on the above observation, we partition the sets N ′(u) and N ′′(u)

in the following way. For each rectangle Ru ∈ R and (i, j) ∈ S, a

rectangle Rv ∈ N ′(u) belongs to the set X ′u(i, j) if and only if (i, j) is

the smallest pair in the lexicographic order such that (a) segment-i of

Ru intersects the segment-j of Rv and (b) segment-j of Rv intersects the

cutting line.
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Similarly, for each rectangle Ru ∈ R and (i, j) ∈ S, a rectangle Rv ∈
N ′′(u) belongs to the set X ′′u(i, j) if and only if (i, j) is the smallest pair

in the lexicographic order such that (a) segment-i of Ru intersects the

segment-j of Rv and (b) segment-i of Ru intersects the cutting line. The

next observation follows from the above definitions.

Observation 5.7.3. For each Ru ∈ R, {X ′u(i, j)}(i,j)∈S is a partition of

N ′(u) and {X ′′u(i, j)}(i,j)∈S is a partition of N ′′(u).

For each Ru ∈ R, define the sets S ′u = {(i, j) ∈ S : X ′u(i, j) 6= ∅}
and S ′′u(i, j) = {(i, j) ∈ S : X ′′u(i, j) 6= ∅}. Recall that according to our

assumption, each rectangle intersect the cutting line exactly two times.

Since the boundary segment of a retangle intersect exactly two boundary

segments of another rectangle, we have the following observation.

Observation 5.7.4. For each Ru ∈ R, |S ′u| ≤ 4 and |S ′′u | ≤ 4.

Proof. Observe that if there is a rectangle R ∈ X ′u(i, j) for some (i, j) ∈
S ′u then R intersects a boundary segment of Ru that does not intersect

the cutting line. There are exactly two boundary segments, say segment-i

and segment-j, of Ru that do not intersect the cutting line. Hence S ′u
is a subset of {(i, i− 1), (i, i+ 1), (j, j − 1), (j, j + 1)} where all addition

operations are modulo 4. Therefore |S ′u| ≤ 4. To prove the second part of

the observation, first we use Observation 5.7.2 to infer that if a rectangle

R ∈ X ′′u(i, j) for some (i, j) ∈ S ′′u then R intersects a boundary segment

of Ru that intersects the cutting line. Now using similar arguments as

above we have that |S ′′u | ≤ 4.

Let Q denote the following ILP formulation of the MDS problem on

G and Ql be the corresponding relaxed LP formulation.

minimize
∑
Rv∈R

xv

subject to
∑

(i,j)∈S′u

∑
Rv∈X′u(i,j)

xv +
∑

(i,j)∈S′′u

∑
Rv∈X′′u (i,j)

xv ≥ 1, ∀Ru ∈ R

xv ∈ {0, 1}, ∀Rv ∈ R
Q
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Let Ql = {xv : Rv ∈ R} be an optimal solution of Ql. By Observa-

tion 5.7.4, for each rectangle Ru ∈ R, we have |S ′u| + |S ′′u | ≤ 8. Hence,

there is a pair (i, j) ∈ S ′u ∪ S ′′u such that either
∑

Rv∈X′u(i,j)

xv ≥ 1
8

or∑
Rv∈X′′u (i,j)

xv ≥ 1
8
. For each pair (i, j) ∈ S, define

A′(i, j) =

Ru ∈ R : (i, j) ∈ S ′u,
∑

Rv∈X′u(i,j)

xv ≥
1

8


B′(i, j) =

⋃
Ru∈A′(i,j)

X ′u(i, j)

A′′(i, j) =

Ru ∈ R : (i, j) ∈ S ′′u ,
∑

Rv∈X′′u (i,j)

xv ≥
1

8


B′′(i, j) =

⋃
Ru∈A′′(i,j)

X ′′u(i, j)

Based on these we have the following two ILP formulations for each

pair (i, j) ∈ S.

minimize
∑

Rv∈B′(i,j)

x′v

subject to
∑

Rv∈X′u(i,j)

x′v ≥ 1,∀Ru ∈ A′(i, j)

x′v ∈ {0, 1}, Rv ∈ B′(i, j)

minimize
∑

Rv∈B′′(i,j)

x′′v

subject to
∑

Rv∈X′′u (i,j)

x′′v ≥ 1,∀Ru ∈ A′′(i, j)

x′′v ∈ {0, 1}, Rv ∈ B′′(i, j)
Q′(i, j) Q′′(i, j)

For each pair (i, j) ∈ S, let Q′l(i, j) and Q′′l (i, j) be the relaxed LP

formulation of Q′(i, j) and Q′′(i, j), respectively. Observe that

OPT (Q) ≤
∑

(i,j)∈S

(OPT (Q′(i, j)) +OPT (Q′′(i, j)))

For each xv ∈ Ql, define yv = min{1, 8xv} and Yl = {yv}xv∈Ql
. Due

to Observation 5.7.3 and 5.7.4, Yl gives a feasible solution to Q′l(i, j)

175



and Q′′l (i, j) for all (i, j) ∈ S. Therefore, OPT (Q′l(i, j)) ≤ 8 · OPT (Ql)

and OPT (Q′′l (i, j)) ≤ 8 · OPT (Ql) for all (i, j) ∈ S. Now we have the

following lemma.

Lemma 5.7.1. For each (i, j) ∈ S there is a set D′(i, j) ⊆ B′(i, j)

such that D′(i, j) gives a feasible solution of Q′(i, j) and |D′(i, j)| ≤ 8 ·
OPT (Q′l(i, j)).

Proof. For any (i, j) ∈ S, solving Q′(i, j) is equivalent to finding a min-

imum cardinality subset D of B′(i, j) such that each rectangle Ru ∈
A′(i, j) overlaps a rectangle in D ∩ X ′u(i, j). Notice that, for each Ru ∈
A′(i, j) the set X ′u(i, j) is non-empty. Moreover for each Rv ∈ X ′u(i, j),
the segment-j of Rv intersects the cutting line and segment-i of Ru. Let

S = {segment-i of Ru : Ru ∈ A′(i, j)}, T = {segment-j of Rv : Rv ∈
B′(i, j)}.

Solving Q′(i, j) is equivalent to the problem finding a minimum car-

dinality subset D of T such that every segment in S intersect at least

one segment in D. Moreover, every segment in T intersects the cut-

ting line. Without loss of generality we can assume that S consists of

vertical segments. Therefore T consists of horizontal segments all inter-

secting the cutting line. Hence solving Q′(i, j) is equivalent to solving the

LVSC(S, T ) instance. Hence by Lemma 5.1.3, we have a feasible solution

(say D′(i, j)) for Q′(i, j) such that |D′(i, j)| ≤ 8 ·OPT (Q′l(i, j)).

Using similar arguments as in the proof of Lemma 5.7.1, we can prove

that solving Q′′(i, j) is equivalent to solving an instance of the LHSC

problem. Then using Lemma 5.1.4 we can prove the following lemma.

Lemma 5.7.2. For each (i, j) ∈ S there is a set D′′(i, j) ⊆ B′′(i, j)

such that D′′(i, j) gives a feasible solution of Q′′(i, j) and |D′′(i, j)| ≤
8 ·OPT (Q′′l (i, j)).

For each Rv ∈ R, let Tv = {(i, j) ∈ S : Rv ∈ B′(i, j) or Rv ∈ B′′(i, j)}.
The following observation follows from the definitions of B′(i, j) and

176



B′′(i, j).

Observation 5.7.5. For each Rv ∈ R, we have that |Tv| ≤ 12.

For each pair (i, j) ∈ S, due to Lemma 5.7.1 and Lemma 5.7.2, we have

a feasible solution D′(i, j) of Q′(i, j) and a feasible solution D′′(i, j) such

that |D′(i, j)| ≤ 8 · OPT (Q′l(i, j)) and |D′′(i, j)| ≤ 8 · OPT (Q′′l (i, j)).

Let D be the union of D′(i, j)’s and D′′(i, j) for all (i, j) ∈ S. Using

Observation 5.7.5 we have

|D| =
∑

(i,j)∈S

(|D′(i, j)|+ |D′′(i, j)|)

≤ 8 ·
∑

(i,j)∈S

(OPT (Q′l(i, j)) +OPT (Q′′l (i, j)))

≤ 768 ·OPT (Ql) ≤ 768 ·OPT (Q)

This completes the proof of Theorem 5.7.1.

5.8 Concluding remarks and open problems

In this chapter, we introduce the class of stabbed rectangle overlap graphs

and study the MDS problem on stabbed rectangle overlap graphs. We

gave an 768-approximation algorithm for the MDS problem on stabbed

rectangle overlap graphs. As a corollary to Theorem 5.7.1, we have the

following.

Corollary 7. Let R be a stabbed rectangle intersection representation of

a graph G such that no two rectangles in R contain each other. There is

an O(|V (G)|5)-time 768-approximation algorithm for the MDS problem

on G.

We also proved that if the Unique Games Conjecture is true then it is

not possible to have a polynomial-time (2− ε)-approximation algorithm
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for the MDS problem on rectangle overlap graphs. However, our con-

struction does not work for stabbed rectangle intersection graphs. This

leads to the following question(s).

Question 5.8.1. Is there a c-approximation algorithm for the MDS

problem on stabbed rectangle overlap graphs with c < 768?

Question 5.8.2. Is there a constant factor approximation algorithm for

the MDS problem on stabbed rectangle intersection graphs?

Question 5.8.3. Is there a constant factor approximation algorithm for

the MDS problem on rectangle overlap graphs?

To prove the approximation ratio of our algorithms, we studied the

SSR problem and the SRS and proved that their integrality gaps are at

most two. Improvements on the upper bounds of the integrality gaps of

the SSR problem and the SRS problem will immediately imply better

approximation ratios for several optimisation problems including a few

studied by Bandyapadhyay and Meharbi [14]. Therefore the following

question might be interesting.

Question 5.8.4. What is the integrality gap of the SSR and SRS prob-

lems?
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6.6 Concluding remarks and open problems . . . . . . . 198

In this chapter, we present approximation algorithms for the Minimum

Dominating Set (MDS) problem on vertically-stabbed L-graphs and

unit Bk-VPG graphs. Recall that an L-path is a simple rectilinear path

having the shape ‘L’. A set of L-paths is vertically-stabbed if all L-paths in

the set intersect a common vertical line. A graph G is a vertically-stabbed

L-graph if G is an intersection graph of a set R of vertically-stabbed L-

paths. Here R is a vertically-stabbed L-representation of G. For k ≥ 0,

A graph G is a unit Bk-VPG graph if G is an intersection graph of a set

R of simple rectilinear curves on the plane such that each curve in the

set has at most k bends and each segment of each of the curves have the

same length as the other. Here R is a unit Bk-VPG representation of G.

6.1 Chapter overview

In Section 6.2, we shall prove that it is NP-Hard to solve the MDS

problem on unit Bk-VPG graphs with k ≥ 0 (Theorem 6.2.1).

In Section 6.3, we shall apply Lemma 5.1.1 and Lemma 5.1.2 an pro-

pose an 8-approximation algorithm for the MDS problem on vertically-

stabbed L-graphs. In Section 6.4, we present an 18-approximation al-

gorithm for the MDS problem on unit B0-VPG graphs. In Section 6.5,

we present an O(k4)-approximation algorithm for the MDS problem on

unit Bk-VPG graphs, for each k ≥ 1. Finally, we draw conclusions in

Section 6.6.

6.2 Hardness result

In this section, we prove the following theorem.
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(a) (b)

Figure 6.2.1: (a) A (4, 4)-grid. In this case, X consists of the gray ver-
tices and Y consists of black vertices. (b) A unit B0-VPG representa-
tion of (a).

Theorem 6.2.1. It is NP-Hard to solve the MDS problem on unit Bk-

VPG graphs with k ≥ 0.

First we prove the NP-hardness for the MDS problem on unit B0-

VPG graphs. The (h,w)-grid is the undirected graph G with vertex set

{(x, y) : x, y ∈ Z, 1 ≤ x ≤ h, 1 ≤ y ≤ w} and edge set {(u, v)(x, y) : |u −
x|+ |v− y| = 1}. A graph G is a grid graph if G is an induced subgraph

of (h,w)-grid for some positive integers h,w. We shall reduce the NP-

complete MDS problem on grid graphs [56] to the MDS problem on unit

B0-VPG graphs.

We shall show that any grid-graph is a unit-B0-VPG graph and thus

prove Theorem 6.2.1. Observe that, it is sufficient to show that for any

positive even integer n the (n, n)-grid has a unit B0-VPG representa-

tion. Let n be a fixed positive even integer and H be a (n, n)-grid. Let

X = {(i, j) ∈ V (H) : i, j have same parity} and Y = V (H) \ X. See

Figure 6.2.1(a) for an example. We have the following observation.

Observation 6.2.1. For any edge e ∈ E ′, one of the endpoints of e

belongs to X and the other endpoint belongs to Y .

We shall show that H has a unit B0-VPG representation R where the

vertical segments represent the pairs in X and the horizontal segments
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represent the pairs in Y . We describe how to get such a unit B0-VPG

representation of H below.

Let ε = 1
n2 . For each (i, j) ∈ Y , we define two real values xi,j and yi,j

as follows.

xi,j =



⌈
j
2

⌉
when i = 1

⌈
j
2
− ε
⌉

when i = 2

xi−1,j+1 +
xi−2,j − xi−1,j+1

2
when i ≥ 3, i ≡ 0 mod 2

xi−1,j−1 +
xi−2,j − xi−1,j−1

2
when i ≥ 3, i ≡ 1 mod 2

yi,j =
i

2
+

⌈
j

2

⌉
ε

Notice that for i ≥ 3, if (i, j) ∈ Y , then (i − 2, j) ∈ Y . Moreover, if

i is even then (i − 1, j + 1) ∈ Y and if i is odd then (i − 1, j − 1) ∈ Y .

Therefore, the values xi,j for all (i, j) ∈ Y are well-defined. We have the

following observation.

Observation 6.2.2. Let for some pair (i, j) we have {(i, j − 1), (i, j +

1), (i+ 1, j), (i− 1, j)} ⊆ Y . Then

(i) xi,j−1 + 1 = xi,j+1 and yi,j−1 = yi,j+1 − ε;
(ii) xi+1,j < xi,j+1 < (xi+1,j) + 1 and xi−1,j < xi,j+1 < xi−1,j + 1;

(iii) when i ≡ 1 mod 2, yi−1,j = yi,j+1 − 0.5 and yi+1,j = yi,j+1 + 0.5;

and

(iv) when i ≡ 0 mod 2, yi−1,j = yi,j−1 − 0.5 and yi+1,j = yi,j−1 + 0.5

Now for each (i, j) ∈ Y , we define a horizontal line segment si,j as

follows.

si,j = [xi,j, xi,j + 1]× [yi,j, yi,j]
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Let S = {si,j}(i,j)∈Y . Observe that no two segment in S intersect each

other and length of every segment in S is one. Now for each (i, j) ∈ X,

we define the real values x′i,j and y′i,j as follows.

x′i,j =

{
xi,j+1 when i ≡ 1 mod 2

xi,j−1 + 1 when i ≡ 0 mod 2

y′i,j =

{
yi,j+1 − 0.5 when i ≡ 1 mod 2

yi,j−1 − 0.5 when i ≡ 0 mod 2

Notice that, for each (i, j) ∈ X if i is odd then (i, j+ 1) ∈ Y and if i is

even then (i, j − 1) ∈ Y . Therefore, the values x′i,j are well defined. Now

for each (i, j) ∈ X, we define a vertical segment ti,j as follows.

ti,j = [x′i,j, x
′
i,j]× [y′i,j, y

′
i,j + 1]

Let T = {ti,j}(i,j)∈X . Observe that no two segment in T intersect each

other and length of every segment in T is one. Moreover we have the

following observation about T .

Observation 6.2.3. For a pair (i, j) ∈ X, let Si,j be the set of segments

in S that intersect ti,j. Then

Si,j =



{si+1,j, si,j+1} when i = 1, j = 1

{si+1,j, si,j+1, si,j−1} when i = 1, 2 ≤ j ≤ n− 1

{si−1,j, si,j+1, si,j−1} when i = n, 2 ≤ j ≤ n− 1

{si+1,j, si−1,j, si,j+1} when 2 ≤ i ≤ n, j = 1

{si+1,j, si−1,j, si,j−1} when 2 ≤ i ≤ n, j = n

{si+1,j, si−1,j, si,j+1, si,j−1} when 2 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1

Proof. We shall prove the observation only for the case when 2 ≤ i ≤
n − 1, 2 ≤ j ≤ n − 1 and i is odd. For the remaining cases similar

arguments will suffice. Notice that when (i, j) ∈ X, we have {(i+1, j), (i−
1, j), (i, j+1), (i, j−1)} ( Y and therefore si+1,j, si−1,j, si,j+1, si,j−1 exists.
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Since i is odd, the bottom and top endpoints of ti,j are (xi,j+1, yi,j+1 −
0.5) and (xi,j+1, yi,j+1 + 0.5), respectively. Recall that the left endpoint

of si,j+1 is (xi,j+1, yi,j+1) and using Observation 6.2.2(i) we can infer that

the right endpoint of si,j−1 is (xi,j+1, yi,j+1 − ε). These facts imply that

the segment ti,j ∩ si,j−1 is the right endpoint of si,j−1 and ti,j ∩ si,j−1 is

the left endpoint of si,j+1. Due to Observation 6.2.2(ii) and 6.2.2(iii),

the bottom endpoint of ti,j lies between the left and right endpoints of

si−1,j and has the same y-coordinate as that of si−1,j. Hence ti,j ∩si−1,j =

{(xi,j+1, yi,j+1−0.5)} = {(x′i,j, y′i,j)}. Similarly, we can show that si+1,j =

{(xi,j+1, yi,j+1 + 0.5)} = {(x′i,j, y′i,j + 1)}. This completes the proof.

Using Observation 6.2.1 and Observation 6.2.3 we can infer that S ∪T
is a valid unit B0-VPG representation of H. See Figure 6.2.1(b) for an

example.

6.3 Algorithm for vertically-stabbed L-graphs

Given a vertically-stabbed L-representation of a graph G with n vertices,

we shall give an O(n5)-time 8-approximation algorithm to solve the MDS

problem on G. Specifically, we prove the following theorem.

Theorem 6.3.1. Given a vertically-stabbed L-representation of a graph

G with n vertices, there is an O(n5)-time 8-approximation algorithm to

solve the MDS problem on G.

In the rest of the chapter, OPT (Q) and OPT (Ql) denote the cost of

the optimum solution of an ILP formulation Q and LP formulation Ql,

respectively.

Overview of the algorithm: First, we solve the relaxed LP formulation

of the ILP formulation of the MDS problem on the input vertically-

stabbed L graph G and create two subproblems. We shall show that

one of those two subproblems is equivalent to the SSR problem and the
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other is equivalent to the SRS problem (defined in Chapter 5). Due to

Katz et al [107] we know these subproblems can be solved optimally in

polynomial time. Moreover, due to Lemma 5.1.1 and 5.1.2 we know that

the integrality gaps of each of these problems are at most two. We shall

use the above facts to prove an upper bound on the approximation ratio

of our algorithm. The running time of the algorithm becomes O(n5)

where n is the number of vertices in the input graph [147]. We note

that such techniques have been previously used to design approximation

algorithms [1, 35, 85].

Now we describe our approximation algorithm for MDS problem on

vertically-stabbed L graphs. Let G be a graph and R = {Lu}u∈V be a

vertically-stabbed L-representation of G. Without loss of generality, we

assume that (i) the vertical line x = 0 intersects all the L-paths in R
and the x-coordinate of the corner point of each L-path in R is strictly

less than 0, and (ii) whenever two distinct L-paths intersect in R, they

intersect at exactly one point.

For a vertex u ∈ V (G), let N [u] denote the closed neighbourhood of u

in G, Hu = {c ∈ N [u] : Lc intersects the horizontal segment of Lu} and

let Vu denote the set N(u) \ Hu. Based on these we have the following

ILP (say Q) of the problem of finding a minimum dominating set of G.

minimize
∑

v∈V (G)

xv

subject to
∑
v∈Hu

xv +
∑
v∈Vu

xv ≥ 1, ∀u ∈ V (G)

xv ∈ {0, 1}, ∀v ∈ V (G)

Q

Let Ql be the the relaxed LP formulation of Q and Ql = {xv : v ∈
V (G)} be an optimal solution of Ql. Now we define the following sets.

A1 =

{
u ∈ V (G) :

∑
v∈Hu

xv ≥
1

2

}
, A2 =

{
u ∈ V (G) :

∑
v∈Vu

xv ≥
1

2

}
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H =
⋃
u∈A1

Hu, V =
⋃
u∈A2

Vu

Based on these, we consider the following two integer programs Q′ and

Q′′.

minimize
∑
v∈H

x′v

subject to
∑
v∈Hu

x′v ≥ 1,∀u ∈ A1

x′v ∈ {0, 1}, v ∈ H

minimize
∑
v∈V

x′′v

subject to
∑
v∈Vu

x′′v ≥ 1,∀u ∈ A2

x′′v ∈ {0, 1}, v ∈ V
Q′ Q′′

Let Q′l and Q′′l be the relaxed LP of Q′ and Q′′ respectively. Clearly, the

solutions of Q′ and Q′′ gives a feasible solution for Q. Hence OPT (Q) ≤
OPT (Q′) + OPT (Q′′). For each xv ∈ Ql, define yv = min{1, 2xv} and

define Yl = {yv}xv∈Ql
. Notice that Yl gives a solution to Q′l and Q′′l .

Therefore, OPT (Q′l) +OPT (Q′′l ) ≤ 4 ·OPT (Ql). We have the following

lemma.

Lemma 6.3.1. OPT (Q′) ≤ 2 ·OPT (Q′l) and OPT (Q′′) ≤ 2 ·OPT (Q′′l ).

Proof. Note that for each vertex u ∈ A1, Hu is non-empty and for each

v ∈ Hu, Lv intersects the horizontal segment of Lu. Let R be the set of

horizontal segments of the L-paths representing the vertices in A1 and S

be the set of vertical segments of the L-paths representing the vertices

in H. Since all horizontal segments in R intersect the vertical line x = 0

and the x-coordinates of the vertical segments in S is strictly less than

0, we can consider the horizontal segments in R as rightward directed

rays. Hence, solving Q′ is equivalent to solving the ILP, say E , of the

problem of finding a minimum cardinality subset of vertical segments

S that intersects all rays in the set R of rightward-directed rays. Hence

solving E is equivalent to solving an SRS instance with R and S as input.

By Lemma 5.4.1, we have that

OPT (Q′) = OPT (E) ≤ 2 ·OPT (El) ≤ 2 ·OPT (Q′l)
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where El is the relaxed LP of E . Hence we have proof of the first part.

For the second part, using similar arguments as above, we can show

that solving Q′′ is equivalent to solving an SSR instance. Hence, by

Lemma 5.1.1, we have that OPT (Q′′) ≤ 2 · OPT (Q′′l ). Hence the proof

follows.

Proof of Theorem 6.3.1: Lemma 6.3.1 implies that solving Q′ (resp.

Q′′) is equivalent to solving an SRS (resp. SSR) problem instance. Let

A be the union of the solutions returned by the optimal algorithms for

SRS problem and SSR problem (due to Katz et al. [107]), used to solve

Q′ and Q′′ respectively. Hence,

|A| ≤ 2(OPT (Q′l) +OPT (Q′′l )) ≤ 8 ·OPT (Ql) ≤ 8 ·OPT (Q)

Since Ql consists of n variables where n = |V |, solving Ql takes O(n5)

time [147]. Solving both the SSR and SRS instances takes a total of

O(n log n) time and therefore the total running time of the algorithm is

O(n5).

6.4 Algorithm for unit B0-VPG graphs

Given a unit B0 representation of a graph G, we shall give an 18-

approximation algorithm for the MDS problem on G. In fact, we shall

prove the following stronger theorem.

Theorem 6.4.1. Let S1 and S2 be sets of orthogonal unit length segments.

Let C be the ILP of the problem of finding a minimum cardinality subset

D of S2 such that every segment in S1 intersects some segment in D.

There is an O(n5)-time algorithm to compute a set D′ ⊆ S2 which gives

a feasible solution of C and |D′| ≤ 18 ·OPT (Cl) where n = |S1 ∪ S2| and

Cl is the relaxed LP of C.
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We shall use Theorem 6.4.1 to prove our result on unit Bk-VPG graphs,

with k ≥ 1. In the next section, we give an overview of the algorithm.

6.4.1 Overview of the algorithm

First, we solve the relaxed LP formulation Cl of C and create two sub-

problems. Since C consists of n variables where n = |S2|, solving Ql takes

O(n5) time [147]. We shall show that these subproblems are equivalent

to one of the following optimisation problems.

1. The Subset Unit Interval Domination (SUID) problem: In

this problem, the inputs are (i) a set X of horizontal unit length

segments, (ii) a set Y of vertical unit-length segments, and (iii)

two sets X ′, Y ′ such that X ′ ⊆ X and Y ′ ⊆ Y . The objective is

to find a minimum cardinality subset D of X ∪ Y such that every

horizontal (resp. vertical) segment in X ′ (resp. Y ′) intersects at

least one horizontal (resp. vertical) segment in D∩X (resp. D∩Y ).

Through out this article, SUD(X ′, X, Y ′, Y ) shall denote an SUID

instance.

2. The Unit Orthogonal Segment Stabbing (UOSS) problem:

In this problem, the inputs are (i) two sets X1, X2 containing hori-

zontal unit length segments and (ii) two sets Y1, Y2 containing ver-

tical unit length segments. The objective is to find a minimum

cardinality subset D of X2 ∪ Y2 such that every horizontal (resp.

vertical) segment in X1 (resp. Y1) intersect at least one vertical

(resp. horizontal) segment in D ∩ Y2 (resp. D ∩X2). Through out

this article, US(X1, Y1, X2, Y2) shall denote a UOSS instance.

We shall show that the integrality gaps of these subproblems are

bounded by some constants and hence admit constant factor approxi-

mation algorithms. Specifically, we shall prove the following lemmas.
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Lemma 6.4.1. Let X (resp. Y ) be a set of horizontal (resp. vertical) unit

length segments. For X ′ ⊆ X and Y ′ ⊆ Y , let A be the ILP formulation

of the SUD(X ′, X, Y ′, Y ) instance. Then OPT (A) = OPT (Al) where Al
is the relaxed LP of A. Moreover, OPT (A) can be computed in O(n log n)

time where n = |X|+ |Y |.

Lemma 6.4.2. Let X1, X2 (resp. Y1, Y2) be sets of horizontal (resp.

vertical) unit length segments. Let B be the ILP formulation of the

US(X1, Y1, X2, Y2) instance. Then there is an O(n5)-time algorithm to

compute a set D′ ⊆ X2 ∪ Y2 which gives a feasible solution of B and

|D′| ≤ 8 · OPT (Bl) where n = |X1 ∪X2 ∪ Y1 ∪ Y2| and Bl is the relaxed

LP of B.

In Section 6.4.2, we prove Lemma 6.4.1. Then in Section 6.4.3, we

shall prove Lemma 6.4.2 using Lemma 5.1.1. Using Lemma 6.4.1 and

Lemma 6.4.2, we shall complete the proof of Theorem 6.4.1 in Sec-

tion 6.4.4.

6.4.2 Proof of Lemma 6.4.1

Recall that X is a set of horizontal unit length segments, Y is a set

of vertical unit length segments, X ′ ⊆ X, Y ′ ⊆ Y and A is the ILP

formulation of the SUD(X ′, X, Y ′, Y ) instance.

Let A′ be the ILP formulation of the problem of finding a subset D1

of X with minimum cardinality such that any segment in X ′ intersects a

segment in D1. Let A′′ be the ILP formulation of the problem of finding

a subset D2 of Y with minimum cardinality such that any segment in

Y ′ intersects a segment in D2. Observe that, OPT (A) = OPT (A′) +

OPT (A′′) and OPT (Al) = OPT (A′l) + OPT (A′′l ) where A′l and A′′l are

the relaxed LP formulations of A′ and A′′, respectively. Now we have the

following observation.

Observation 6.4.1. OPT (A′) = A′l and OPT (A′′) = OPT (A′′l ).
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Proof. We shall only prove the observation for OPT (A′) as similar ar-

guments will suffice for the other case. Let X ′i ⊆ X ′ be the set of all

horizontal segments whose y-coordinate is i. Similarly let Xi ⊆ X be the

set of all horizontal segments whose y-coordinate is i. Let A′i be the ILP

formulation of the problem of finding a subset D′i of X with minimum car-

dinality such that any segment in X ′i intersects a segment in D′. Observe

that, OPT (A′) =
∑
i

OPT (A′i) and OPT (A′l) =
∑
i

OPT (A′i,l) where A′i,l
is the relaxed LP formulation of A′i. Now we prove the following claim.

Claim. For each i, OPT (A′i) = OPT (A′i,l).

To prove the claim first define for each horizontal segment h ∈ Xi, let

l(h) denote the left endpoints of h. Let h1, h2, . . . , hk be the segments

in Xi sorted in the ascending order of the x-coordinates of l(h). For a

segment h′ ∈ X ′i, let N(h′) denote the set of intervals in Xi that intersect

h′. LetM be the coefficient matrix of A′i such that the ith column ofM
corresponds to the variable corresponding to hi ∈ Xi. Observe that in

each row ofM, the set of 1’s are consecutivel. Therefore, M is a totally

unimodular matrix [141]. Thus any optimal solution of A′i,l is integral.

Thus we have the proof of the claim.

Hence OPT (A′) =
∑
i

OPT (A′i) =
∑
i

OPT (A′i,l) = OPT (A′l). This

completes the proof of the observation.

Using the above observation, we have that OPT (A) = OPT (A′) +

OPT (A′′) = OPT (A′l) + OPT (A′′l ) = OPT (Al). This completes the

proof of the lemma.

6.4.3 Proof of Lemma 6.4.2

Recall that X1, X2 are sets of horizontal unit length segments, Y1, Y2 are

sets of vertical unit length segments and B is the ILP formulation of the

US(X1, Y1, X2, Y2) instance.
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Let B′ be an ILP formulation of the problem of finding a subset D′ of

Y2 with minimum cardinality such that any segment in X1 intersects a

segment in D′. Let B′′ be an ILP formulation of the problem of finding

a subset D′′ of X2 with minimum cardinality such that any segment in

Y1 intersects a segment in D′′. Observe that, OPT (B) = OPT (B′) +

OPT (B′′) and OPT (Bl) = OPT (B′l)+OPT (B′′l ) where B′l and B′′l are the

relaxed LP formulations of B′ and B′′, respectively. Now we prove the

following proposition.

Lemma 6.4.3. OPT (B′) ≤ 8 ·OPT (B′l) and OPT (B′′) ≤ 8 ·OPT (B′′l ).

Proof. We shall only prove the lemma for OPT (B′′) as similar arguments

suffice for the other case. Let X2 = S and Y1 = T and let IS be the set

of intervals obtained by projecting the horizontal segments in S onto the

x-axis. Observe that IS is set of unit intervals.

Without loss of generality, we assume that (i) no two interval in IS
contain each other, and (ii) x-coordinate of any vertical segment in T is

distinct from the left and right endpoints of any interval in IS. Since no

two interval in IS contain each other, there exists a set P of real numbers

such that each interval in IS contains exactly one real number from P .

(To see this, consider the right endpoints of the intervals in the maximum

cardinality subset of IS with pairwise non-intersecting intervals which is

obtained using the greedy algorithm [112]). Add in P two more dummy

values q, q′ which are not contained in any interval in IS such that q

(resp. q′) is less than (resp. greater than) that of all values in P . Let

p1, p2, . . . , pt be the values in P sorted in the ascending order (notice that

p1 = q and pt = q′). For each i ∈ {1, 2, . . . , t−1}, let Ti denote the vertical

segments of T that lies inside the strip bounded by the lines y = pi and

y = pi+1. Due to our assumptions, for any i 6= j, Ti and Tj are disjoint.

For each i ∈ {1, 2, . . . , t− 1}, and each vertical segment v ∈ Ti, let Sleftv

(resp. Srightv ) be the subset of S that intersects v and the line y = pi

(resp. y = pi+1). Since any interval in IS contains exactly one value
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from {pi, pi+1}, we have that Sleftv ∩ Srightv = ∅, for each vertical segment

v ∈ T . Based on these we have the following equivalent ILP formulation

(say W ) of B′′.

minimize
∑
v∈S

xv

subject to
∑

v∈Sleftu

xv +
∑

v∈Srightu

xv ≥ 1,∀u ∈ T

xv ∈ {0, 1}, ∀v ∈ S
W

Let Wl = {xv : v ∈ S} be an optimal solution of the relaxed LP

formulation (say Wl) of W . Consider the following sets.

A1 =

u ∈ T :
∑

v∈Sleftu

xv ≥
1

2

 , A2 =

u ∈ T :
∑

v∈Srightu

xv ≥
1

2


L =

⋃
v∈A1

Sleftv , R =
⋃
v∈A2

Srightv

Based on these, we consider the following two integer programs W ′ and

W ′′.

minimize
∑
v∈L

x′v

subject to
∑

v∈Sleftu

x′v ≥ 1,∀u ∈ A1

x′v ∈ {0, 1}, v ∈ L

minimize
∑
v∈R

x′′v

subject to
∑

v∈Srightu

x′′v ≥ 1,∀u ∈ A2

x′′v ∈ {0, 1}, v ∈ R
W ′ W ′′

Let W ′
l and W ′′

l be the corresponding relaxed LPs of W ′ and W ′′ respec-

tively. The union of the solutions of W ′ and W ′′ gives a solution for W

implying OPT (W ) ≤ OPT (W ′) + OPT (W ′′). For each xv ∈Wl, define

yv = min{1, 2xv} and define Yl = {yv}xv∈Wl
. Notice that Yl gives a solu-

tion to W ′
l (and W ′′

l ). Hence, OPT (W ′
l ) ≤ 2 ·OPT (Wl) and OPT (W ′′

l ) ≤
2 ·OPT (Wl). Therefore, OPT (W ′

l ) +OPT (W ′′
l ) ≤ 4 ·OPT (Wl). Notice

that, solving W ′ (resp. W ′′) is equivalent to the problem of finding a
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minimum cardinality subset of the horizontal segments in L (resp. R)

to intersect all vertical segments in A1 (resp. A2). Now we have the

following claim.

Claim. OPT (W ′) ≤ 2 ·OPT (W ′
l ) and OPT (W ′′) ≤ 2 ·OPT (W ′′

l ).

We shall prove the above claim only for W ′ as proof for the other case

is similar. Recall that solving W ′ is equivalent to the problem of find-

ing a minimum cardinality subset of the horizontal segments in the set

L (defined earlier) to intersect all vertical segments in A1. For each

i ∈ {1, 2, . . . , (t − 1)} let T1,i = A1 ∩ Ti and Li be the set of horizon-

tal segments in L that intersect some vertical segment in T1,i. Formally,

Li =
⋃

v∈T1,i
Sleftv . For any i 6= j, T1,i∩T1,j = ∅ and let Li∩Lj = ∅ (this fol-

lows from the fact no horizontal segment in S intersects both y = pi and

y = pj). For each i ∈ {1, 2, . . . , (t−1)}, let Di (resp, Di,l) denote the ILP

(resp. relaxed LP) of the problem of selecting minimum subset Di hori-

zontal segments in Li such that all vertical segments in T1,i intersect at

least one horizontal segment in Di. Clearly, OPT (W ′) =
∑t−1

i=1 OPT (Di)
and OPT (W ′

l ) =
∑t−1

i=1 OPT (Di,l). For each i ∈ {1, 2, . . . , (t − 1)} no-

tice that, all horizontal segments intersect the vertical line y = pi and

all vertical segments in T1,i lies to the left of the vertical line y = pi.

For each i ∈ {1, 2, . . . , (t − 1)} if we consider the segments in Li to

be leftward-directed rays then solving Di is equivalent to solving an

SSR instance with T1,i and Li as input. Due to Lemma 5.1.1, for each

i ∈ {1, 2, . . . , (t− 1)}, OPT (Di) ≤ 2 ·OPT (Di,l). Hence,

OPT (W ′) =
t−1∑
i=1

OPT (Di) ≤ 2 ·
t−1∑
i=1

OPT (Di,l) = 2 ·OPT (W ′
l )

This completes the proof of the claim.

Using the above claim and previous observations, we can infer that

OPT (W ) ≤ OPT (W ′) + OPT (W ′′) ≤ 2(OPT (W ′
l ) + OPT (W ′′

l )) ≤
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8 ·OPT (W ′
l ). This completes the proof of the proposition.

Hence, Observe that, OPT (B) = OPT (B′)+OPT (B′′) ≤ 8(OPT (B′l)+

OPT (B′′l )) = 8· OPT (Bl). This completes the proof of the lemma.

6.4.4 Completion of proof of Theorem 6.4.1

Recall that S1 and S2 are sets of orthogonal unit length segments, C is an

ILP formulation of the problem of finding a minimum cardinality subset

D of S2 such that every segment in S1 intersects some segment in D. We

shall give an O(n5)-time algorithm to compute a set D′ ⊆ S2 which gives

a feasible solution of C and |D′| ≤ 18 ·OPT (Cl) where n = |S1 ∪ S2| and

Cl is the relaxed LP formulation of C.
Let V1 and H1 be the sets of vertical and horizontal segments in S1,

respectively. Similarly, let V2 and H2 be the sets of vertical and horizontal

segments in S2, respectively. For v ∈ V1 ∪H1, let N(v) ⊆ V2 ∪H2 denote

the set of segments that intersects v. For w ∈ H1, let No(w) = N(w)∩H2

and for w ∈ V1 let No(w) = N(w) ∩ V2. Based on these we have the

following equivalent ILP formulation (say Z) of C.

minimize
∑

w∈V2∪H2

xw

subject to
∑

w∈No(u)

xw +
∑

w∈N(u)\No(u)

xw ≥ 1,∀u ∈ V1 ∪H1

xw ∈ {0, 1}, ∀w ∈ V2 ∪H2

Z

The first step of our algorithm is to solve the relaxed LP formulation

(say Zl) of Z. Let Zl = {xw : w ∈ V2 ∪H2} be an optimal solution of Zl.

Let

A1 =

u ∈ V1 ∪H1 :
∑

w∈No(u)

xw ≥
1

2


A2 =

u ∈ V1 ∪H1 :
∑

w∈N(u)\No(u)

xw ≥
1

2


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,

B1 =
⋃
u∈A1

No(u), B2 =
⋃
u∈A2

N(u) \No(u)

Based on these, we consider the following two integer programs Z ′ and

Z ′′.

minimize
∑
w∈B1

x′w

subject to
∑

w∈No(v)

x′w ≥ 1,∀v ∈ A1

x′w ∈ {0, 1}, w ∈ B1

minimize
∑
w∈B2

x′′w

subject to
∑

w∈N(v)\No(v)

x′′w ≥ 1,∀v ∈ A2

x′′w ∈ {0, 1}, w ∈ B2

Z ′ Z ′′

Let Z ′l and Z ′′l be the corresponding relaxed LPs of Z ′ and Z ′′ respec-

tively. Clearly, the union of the solutions of Z ′ and Z ′′ gives a solution

for Z. Hence, OPT (Z) ≤ OPT (Z ′) + OPT (Z ′′). For each xv ∈ Zl,

define yv = min{1, 2xv} and define Yl = {yv}xv∈Zl . Notice that Yl

gives a solution for Z ′l and Z ′′l . Hence, OPT (Z ′l) ≤ 2 · OPT (Zl) and

OPT (Z ′′l ) ≤ 2 ·OPT (Zl). Now we prove the following lemma.

Lemma 6.4.4. OPT (Z ′) = OPT (Z ′l) and OPT (Z ′′) ≤ 8 ·OPT (Z ′′l ).

Proof. To prove the first part, let X (resp. Y ) be the set of horizontal

(resp. vertical) segments in B1 and X ′ (resp. Y ′) be the set of horizontal

(resp. vertical) segments in A1. Notice that X ′ ⊆ X and Y ′ ⊆ Y . Hence,

Z ′ is the ILP formulation of finding minimum cardinality subset D of

X ∪ Y such that every horizontal (resp. vertical) segment in X ′ (resp.

Y ′) intersects at least one horizontal (resp. vertical) segment in D ∩ X
(resp. D ∩ Y ). By Lemma 6.4.1, we have that OPT (Z ′) = OPT (Z ′l).

To prove the second part, let X1 and X2 (resp. Y1 and Y2) be the sets

of horizontal (resp. vertical) segments in A2 and B2, respectively. Notice

that Z ′′ is the ILP formulation of finding minimum cardinality subset

D of X2 ∪ Y2 such that every horizontal (resp. vertical) segment in X1

(resp. Y1) intersects at least one vertical (resp. horizontal) segment in
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D ∩ Y2 (resp. D ∩ X2). By Lemma 6.4.2, we have that OPT (Z ′′) ≤
8 ·OPT (Z ′′l ).

Using Lemma 6.4.4 and previous arguments, we can conclude that

in O(n5) time it is possible to compute a set D′ ⊆ S2 which gives a

feasible solution of Z where n = |S1 ∪ S2|. Moreover, |D′| ≤ OPT (Z ′) +

OPT (Z ′′) ≤ OPT (Z ′l) + 8 · OPT (Z ′′l ) ≤ 18 · OPT (Zl) ≤ 18 · OPT (Cl).
This completes the proof of the theorem.

6.5 Algorithm for unit Bk-VPG graphs

In this section, we present our approximation algorithm for the MDS

problem on unit Bk-VPG graphs, for k ≥ 1.

Let R be a unit Bk-VPG representation of a unit Bk-VPG graph G.

Throughout this section, we assume that the segments of each path P ∈
R are numbered consecutively starting from the leftmost segment by

1, 2, . . . , t where t(≤ k + 1) is the number of segments in P . For a path

P ∈ R, let N [P ] denote the set of paths in R that intersect P .

Define Φ: R×R → N×N such that for two paths P,Q ∈ R, Φ(P,Q) =

(i, j) if and only if the ith segment of P intersects the jth segment of Q,

and for all 1 ≤ a < i, the ath segment of P does not intersect any segment

of Q.

For a path P ∈ R, let XP (i, j) = {Q ∈ N [P ] : Φ(P,Q) = (i, j)}. For

distinct pairs (i, j) and (i′, j′) the sets XP (i, j) and XP (i′, j′) are disjoint.

Let K denote the set {1, 2, . . . , k+ 1}× {1, 2, . . . , k+ 1}. Based on these

we have the following ILP formulation of the MDS problem on G.

minimize
∑
Q∈R

xQ

subject to
∑

(i,j)∈K

∑
Q∈XP (i,j)

xQ ≥ 1, ∀P ∈ R

xQ ∈ {0, 1}, ∀P ∈ R
Z
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The first step of our algorithm is to solve the relaxed LP formulation

(say Zl) of Z. Let Zl = {xQ : Q ∈ R} be an optimal solution of Zl. For

each path P ∈ R, there is a pair (i, j) ∈ K such that
∑

Q∈XP (i,j)

xQ ≥ 1
(k+1)2

.

For each pair (i, j) ∈ K, define

A(i, j) =

P ∈ R :
∑

Q∈XP (i,j)

xQ ≥
1

(k + 1)2

 ,B(i, j) =
⋃

P∈A(i,j)

XP (i, j)

Based on these we have the following ILP formulation for each pair

(i, j) ∈ K.

minimize
∑

Q∈B(i,j)

x′Q

subject to
∑

Q∈XP (i,j)

x′Q ≥ 1, ∀P ∈ A(i, j)

x′Q ∈ {0, 1}, ∀Q ∈ B(i, j)

Z(i, j)

For each pair (i, j) ∈ K, let Zl(i, j) be the relaxed LP formulation of

Z(i, j). We have the following

OPT (Z) ≤
∑

(i,j)∈K

OPT (Z(i, j))

For each xP ∈ Zl, define yP = min{1, xP (k + 1)2} and define Yl =

{yP}xP∈Zl . Clearly, Yl gives a solution to Zl(i, j) for each (i, j) ∈ K.

Moreover, ∑
(i,j)∈K

OPT (Zl(i, j)) ≤ (k + 1)4 ·OPT (Zl)

Now we have the following lemma.

Lemma 6.5.1. For each pair (i, j) ∈ K, there is a solution D(i, j) for

Z(i, j) such that |D(i, j)| ≤ 18 ·OPT (Zl(i, j)).
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Proof. For any (i, j) ∈ K, solving Z(i, j) is equivalent to finding a mini-

mum cardinality subset D of B(i, j) such that each path P ∈ A(i, j) in-

tersects at least one path is D∩XP (i, j). Notice that, for each P ∈ A(i, j)

the set Xu(i, j) is non-empty and for each Q ∈ XP (i, j), the ith segment

of P intersects the jth segment of Q. Let S1 = {ith segment of P : P ∈
A(i, j)}, S2 = {jth segment of Q : Q ∈ B(i, j)}.

Solving Q(i, j) is equivalent to the problem finding a minimum car-

dinality subset D of S2 such that every segment in S1 intersect at least

one segment in D. Moreover, every segment in S1 ∪ S2 have unit length.

Hence by Theorem 6.4.1, we have a solution (say D(i, j)) for Z(i, j) such

that |D(i, j)| ≤ 18 ·OPT (Zl(i, j)).

For each pair (i, j) ∈ K, due to Lemma 6.5.1, we have a solution D(i, j)

of Z(i, j) such that |D(i, j)| ≤ 18 ·OPT (Zl(i, j)) in polynomial time. Let

D be the union of D(i, j)’s for all (i, j) ∈ K. We have that

|D| =
∑

(i,j)∈K

|D(i, j)|

≤
∑

(i,j)∈K

18 ·OPT (Zl(i, j))

≤ 18 · (k + 1)4 ·OPT (Zl) ≤ 18 · (k + 1)4 ·OPT (Z)

Notice that, in O(k2n5) time it is possible to construct the set D.

6.6 Concluding remarks and open problems

In this chapter, we proposed several approximation algorithms for the

MDS problem on subclasses of string graphs. Using our results on the

SSR problem and theSRS problem, we gave the first constant factor

approximation algorithm for the MDS problem on vertically-stabbed L-

graphs and unit B0-VPG graphs. However, we believe that obtained
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approximation ratio of 18 to be far from being tight. This motivates the

following questions.

Question 6.6.1. Is there a c-approximation algorithm for the MDS

problem on vertically-stabbed L-graphs with c < 8?

Question 6.6.2. Is there a c-approximation algorithm for the MDS

problem on unit B0-VPG graphs with c < 18?

Using our results on SSR and SRS problems, we have an O(k4)-

approximation algorithm for the MDS problem on unit Bk-VPG graphs.

It is unlikely that there is o(log k)-approximation algorithm for MDS

problem on Bk-VPG graphs. This naturally leads to the following ques-

tion(s).

Question 6.6.3. Is there an O(log k)-approximation algorithm for the

MDS problem on Bk-VPG graphs or unit Bk-VPG graphs ?
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7
Conclusion

In this thesis, we studied the forbidden structures of rectangle intersection

graphs in terms of its stab number. We proposed polynomial-time certify-

ing recognition algorithms for several subclasses of rectangle intersection

graphs with stab number at most 3. Then we studied the computational

complexity of the MDS problem on string graphs and its subclasses. We

proposed constant factor approximation algorithms for the MDS prob-

lem on stabbed rectangle overlap graphs and other subclasses of string

graphs. Apart from the open problems posed at the end of the respective

chapters, this thesis motivates the following directions of research.
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7.1 Certifying recognition algorithms for

string graphs

One of the main objectives of this thesis was to study the forbidden struc-

tures of rectangle intersection graphs and see if it is possible to devise

a certifying recognition algorithm. But it seems that developing a cer-

tifying recognition algorithm of rectangle intersection graph will require

more effort. On the other hand, it might be easier to propose a certifying

algorithm for string graphs which is a more general graph class than rect-

angle intersection graphs. It is a widespread belief that any non-string

graph will contain an induced full subdivision of a non-planar graph. A

proof for the above will yield a forbidden structure characterisation of

string graphs.

Question 7.1.1. Is it true that a graph is a string graph if and only if it

does not contain an induced full subdivision of a non-planar graph?

Answer to the above question would increase our understanding of the

structure of string graphs. Note that an affirmative answer to the above

question does not immediately give a certifying recognition algorithm for

string graphs. We also need to study the computational complexity of

deciding whether a given graph has an induced full subdivision of some

non-planar graph.

7.2 Approximation algorithms for the MDS prob-

lem on string graphs

In this thesis, we proposed constant factor approximation algorithms for

MDS problems on stabbed rectangle overlap graphs, vertically-stabbed

L-graphs and unit Bk-VPG graphs for each fixed k ≥ 0. All the results

mentioned above are consequences of the bounded integrality gap of the
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SSR problem. The SSR problem is a special case of the following “stab-

bing type” problems. Given two collections of geometric objects S and

T , let Stab(S, T ) denote the problem of finding the minimum cardinality

subset D of T such that each object in S intersects some object in D.

Observe that when S = T , Stab(S, T ) is equivalent to solving the MDS

problem on intersection graphs of S. Researchers have studied different

Stab(S, T ) problems by putting restrictions on S and T [85, 107]. Let H

be a set of horizontal segments, and V be a set of vertical segments. We

noticed that proof of a constant upper bound on the integrality gap of the

Stab(V,H) problem and a polynomial time rounding algorithm would

give an f(k)-approximation factor algorithm for the MDS problem on

Bk-VPG graphs, for each k ≥ 0. This motivates the following questions.

Question 7.2.1. Prove bounds on the integrality gaps and design approx-

imation algorithms for “stabbing type” problems.

A constant upper bound on the integrality gap of the Stab(V,H) prob-

lem would also give a constant factor approximation algorithm for the

MDS problem on rectangle overlap graphs. Since two rectangles inter-

sect at most four times, rectangle overlap graphs are subclasses of 4-string

graphs, i.e. intersection graphs of a set of simple curves where two curves

intersect at most four times. An important parameter of a string graph

is its rank. For any d > 0, graph G is a string graph of rank d if it is an

intersection graph of simple curves where two curves have at most d cross-

ings [131]. It would be interesting to see if there is a φ(d)-approximation

algorithm for the MDS problem on string graphs with rank at most d.

Question 7.2.2. Is there a polynomial-time φ(d)-approximation algo-

rithm for the MDS problem on string graphs with rank at most d?

It turns out that the Stab(V,H) problem is a special case of the fol-

lowing graph-theoretic problem. Let G be a planar graph, and P be a

collection of paths of G. The HIT(G,P) problem is to select a minimum
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cardinality subset S of V such that each path in P contains at least one

vertex from S. Observe that, the HIT(G,P) problem is a generalisation

of the Minimum Vertex Cover problem on planar graphs. Study-

ing the HIT(G,P) problem and its possible variants are of independent

interest.

Question 7.2.3. What is the optimal approximation ratio for the the

HIT(G,P) problem?

Observe that the HIT(G,P) problem is equivalent to solving the geo-

metric Stab(C, P ) problem where C is a given set of simple curves and

P is a given set of points. Researchers have studied different Stab(C, P )

problems by putting restrictions on C [79]. This motivates the following

direction of research.

Question 7.2.4. What is the optimal approximation ratio for solving the

Stab(C, P ) problem where C is a set of simple curves on the plane and

P is a set of points on the plane?
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